TLA7Bxx Logic Analyzer Series Product Specifications & Performance Verification

Technical Reference

This document applies to TLA System Software Version 5.6 or higher

www.tektronix.com

077-0148-01

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc. 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Warranty

Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. Parts, modules and replacement products used by Tektronix for warranty work may be new or reconditioned to like new performance. All replaced parts, modules and products become the property of Tektronix.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THE PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

[W2 - 15AUG04]

Table of Contents

Preface	iii
Related Documentation	iii
Specifications and Characteristics	1
Atmospheric Characteristics	2
TLA7Bxx Logic Analyzer Module Specifications	3
Performance Verification Procedures	13
Test Equipment	13
Threshold Accuracy Test Fixture	14
Threshold Accuracy Test	15
Setup & Hold Test	17
Functional Check Procedures	21
Functional Verification	21

List of Tables

Table 1: Atmospheric characteristics	2
Table 2: Input parameters with probes	3
Table 3: Analog output	4
Table 4: Channel width and depth	4
Table 5: Asynchronous sampling	5
Table 6: Synchronous sampling	5
Table 7: Demultiplex sampling	6
Table 8: Source synchronous sampling	7
Table 9: Clocking state machine	7
Table 10: Trigger system	7
Table 11: MagniVu feature	10
Table 12: Merged modules	11
Table 13: Data placement.	11
Table 14: NVRAM	12
Table 15: Mechanical	12
Table 16: Test equipment	13

Preface

This document lists the characteristics and specifications of the TLA7Bxx Logic Analyzer products. It also contains performance verification and functional check procedures for the TLA7ABxx Logic Analyzer module.

For information on safety summaries, environmental considerations, and compliance information, refer to the *Tektronix Logic Analyzer Family Product Safety and Compliance Instructions* (Tektronix part number 071-2591-xx).

Related Documentation

TThe following table lists related documentation, available as printed documents or as PDF documents on the TLA Documentation CD and on the Tektronix Web site (www.tektronix.com). Other documentation, such as online help, is available on the instrument.

Related documentation

ltem	Purpose
TLA Quick Start User manuals	High-level operational overview
Online Help	In-depth operation and UI help
Installation Reference sheets	High-level installation information
Installation manuals	Detailed first-time installation information
XYZs of Logic Analyzers	Logic analyzer basics
Declassification and Securities instructions	Data security concerns specific to sanitizing or removing memory devices from Tektronix products
Application notes	Collection of logic analyzer application specific notes
Product Specifications & Performance Verification procedures	TLA Product specifications and performance verification procedures
Field upgrade kits	Upgrade information for your logic analyzer
Optional service manuals	Self-service documentation for modules and mainframes

Preface

Specifications and Characteristics

All specifications in this document are guaranteed unless noted *Typical*. Typical characteristics describe typical or average performance and provide useful reference information.

Specifications that are marked with the ν symbol are checked directly (or indirectly) at your nearest Tektronix location or by using the performance verification procedures described in this document. (See page 13, *Performance Verification Procedures*.)

The performance limits in this specification are valid with these conditions:

- The instrument must be in an environment with temperature, altitude, humidity, and vibration within the operating limits described in these specifications.
- The instrument must have had a warm-up period of at least 20 minutes.

For modules, the performance limits in this specification are valid with these conditions:

- The module must be installed in a Tektronix Logic Analyzer Mainframe.
- The module must have been calibrated/adjusted at an ambient temperature between +18 °C and +28 °C.

Atmospheric Characteristics

Table 1: Atmospheric characteristics

Characteristic	Description
Temperature	Operating (no media in CD or DVD drive of the mainframe)
	+0 °C to +40 °C, 15 °C/hr maximum gradient, noncondensing (derated 1 °C per 305 m (1000 ft) above 1524 m (5000 ft) altitude)
	Nonoperating (no media)
	-20 °C to +60 °C, 15 °C/hr maximum gradient, noncondensing
Relative Humidity	Operating (no media)
	5% to 90% relative humidity at 30 °C, 75% relative humidity between 30 °C to 40 °C, noncondensing. Maximum wet bulb temperature: +29.4 °C (derates relative humidity to approximately 57% at +40 °C).
	Nonoperating (no media)
	5% to 90% relative humidity to 50 °C, noncondensing. Maximum wet bulb temperature: +40 °C (derates relative humidity to approximately 22% at +50 °C).
Altitude	Operating
	To 3000 m (9843 ft), (derated 1 °C per 305 m (1000 ft) above 1524 m (5000 ft) altitude.
	Nonoperating
	12,000 m (39,370 ft)

TLA7Bxx Logic Analyzer Module Specifications

Characteristic	Description
Threshold accuracy	± (35 mV + 1% of threshold voltage setting)
	For certification trace the characteristic
Threshold range and step size	
Large mode ¹	Settable from -2.0 V to + 4.5 V in 5 mV steps
Fast mode ²	Settable from -1.8 V to + 2.8 V in 5 mV steps
P6960HS probe	Settable from -1.0 V to +2.25 V in 5 mv steps
Threshold channel selection	There is an independent threshold control for each signal.
Channel-to-channel skew	±40 ps maximum (module only)
	Add:±60 ps for P6810, P6860, and P6880 probes
Channel-to-channel skew (Typical)	For module only:±20 ps
Merged module-to-module skew	Inside slave modules (next to master module): +/-120ps (modules only)
(Typical)	Outside slave modules (not next to master module): +/-220ps (modules only)
Sample uncertainty	
Asynchronous	Sample period
Synchronous	20 ps
Input voltage range	
Large mode ¹	-2.0 V to + 5.5 V
Fast mode ²	–2.5 V to + 3.5 V
P6960HS probe	-1.25 V to +2.5 V
Minimum slew rate (Typical)	0.2 V/ns
Maximum operating signal swing	
Large mode ¹	6.0 V _{p-p}
Fast mode ²	2.0 V _{p-p}
Probe overdrive	(Relationship between signal amplitude and threshold setting)
Single ended probes	±150 mV (Large mode) ¹
	±100 mV (Fast mode) ²
	or $\pm 25\%$ of signal swing minimum required beyond threshold, whichever is greater
	±50 mV or ±25% (P6960HS probe)
Differential probes	V _{pos} –V _{neg} is ≥1250 mV _{p-p} (Large mode) ¹
	±50 mV _{p-p} (Fast mode) ²
	V _{pos} -V _{neg} is ±50 mV _{p-p} (P6960HS probe)
Maximum nondestructive input	±15 V
signal to probe	±7.5 V (P6960HS probe)

Table 2: Input parameters with probes

Characteristic	Description
Minimum input pulse width (single	200 ps (high-density and differential probes)
channel) <i>(Typical)</i>	250 ps (general purpose probe)
Electrical delay from probe tip to input connector (<i>Typical</i>)	7.70 ns \pm 60 ps (general purpose, high-density, and differential probes)

Table 2: Input parameters with probes (cont.)

1 The Large mode specification applies when the voltage swing of the input signal is over two volts; the performance can degrade in Large mode.

² The Fast mode specification applies when the voltage swing of the input signal is less than two volts; performance is not degraded in Fast mode.

Table 3: Analog output

Characteristic	Description	
Number of outputs	Four analog outputs regardless of the module width. Any four of the module's channels can be mapped to the four analog outputs.	
Attenuation	10X	
Bandwidth (Typical)	>3 GHz	
Accuracy (Gain & Offset)(Typical)	±(50 mV + 2% of signal amplitude)	

Table 4: Channel width and depth

Characteristic	Description
Number of data channels	
TLA7BB4, TLA7BC4	128 data, 8 clock/qualifier
TLA7BB3	96 data, 6 clock/qualifier
TLA7BB2	64 data, 4 clock/qualifier
Acquisition memory depth	
TLA7BB2, TLA7BB3, TLA7BB4	64 M per channel, maximum
TLA7BC4	128 M per channel, maximum

Characteristic	Description
✓ Internal sampling period	1.25 ns, 800 MS, all channels
	625 ps, 1600 MS, all channels
	313 ps, 3200 MS, half channels
	157 ps, 6400 MS, quarter channels
	50 ms is the slowest sampling rate. A 1-2-5 sequence is supported, but it starts with 157 ps.
Minimum recognizable word (across all channels)	Channel-to-channel skew + sample uncertainty
	Example for a P6860 high-density probe and a 1.25 ns sample period: 160 ps (\pm 60 ps) + 1.25 ns = 1.47 ns
	This specification applies only with asynchronous sampling. With synchronous sampling, the setup and hold window size applies.

Table 5: Asynchronous sampling

Table 6: Synchronous sampling

Characteristic	Description
Synchronous sampling	
Master clock signals	Clock signals
TLA7BB2	4
TLA7BB3	4
TLA7BB4, TLA7BC4	4
	You can enable any or all of the clock signals. For an enabled clock signal, you can select the rising, falling, or both edges as active clock edge(s). The clock signals are stored.
Merged slave clock signals	Clock signals
TLA7BB2	4
TLA7BB3	4
TLA7BB4, TLA7BC4	4
	(In addition to the two clock signals that the Master can send to merged slave modules, each slave module can have additional clocks.)
	You can enable any or all of the clock signals For an enabled clock signal you can select the rising, falling, or both edges as active clock edge(s). Merging is allowed with all TLA7Bxx modules.
Qualifier signals	Qualifier signals
TLA7BB2	0
TLA7BB3	2
TLA7BB4, TLA7BC4	4
	Qualifier signals are stored.
u Single channel setup and hold	Single channel on single module 220 ps maximum
window size	Single channel on two to five merged modules 240 ps maximum
	If Deskew is used, add 20 ps (one oversampler step size) to the above numbers.

Table 6: Synchronous sampling (cont.)

Characteristic	Description
Setup and hold window range	For each signal, the setup and hold window can be moved from +7.5 ns (setup time, typical) to -7.5 ns (setup time, typical) in 20 ps steps. You can shift the setup and hold window towards the setup region with 0 ns, 2.5 ns, 5 ns, or 7.5 ns. With a 0 ns shift the range is [+7.5, -7.5] ns, with a 2.5 ns shift the range is [+10,-5] ns, and with a shift of 7.5 ns the range is [+15,0]. The sample point selection region is the same setup and hold window. This is specified for the setup time with typical figures. Hold time follows the setup time by the Setup and hold window size.
Maximum synchronous clock	750 MHz, one sample point per clock, all channels
rate	750 MHz, two sample points per clock, all channels
	750 MHz, four samples points per clock, half channels
	1400 MHz, one sample point per clock, all channels
	1400 MHz, two sample points per clock, half channels

Table 7: Demultiplex sampling

Characteristic	Description
Base signals (2:1)	A3[7:0], A2[7:0], A1[7:0], A0[7:0]
TLA7BB4, TLA7BC4	C3[7:0], C2[7:0]
	E3[7:0], E2[7:0]
	CK3, CK2, CK1, CK0
TLA7BB3	A3[7:0], A2[7:0], A1[7:0], A0[7:0]
	C3[7:0], C2[7:0]
	CK1, CK0
TLA7BB2	A3[7:0], A2[7:0], A1[7:0], A0[7:0]
	CK3, CK1
Base signals (4:1)	A3[7:0], A1[7:0]
TLA7BB4, TLA7BC4	C3[7:0]
	E3[7:0]
	CK3, CK1
TLA7BB3	A3[7:0], A1[7:0]
	C3[7:0]
	CK1
TLA7BB2	A1[7:0]
	C3[7:0]
Time between demultiplex clock edges (<i>Typical</i>)	Same limitations as that for normal synchronous acquisition.

Characteristic	Description	
Source synchronous edge detectors per module	4	
Source synchronous edge detectors with merged modules	Slave modules have four source synchronous edge detectors. Two clocks are passed over from the master module.	
Clock groups	Four for both single module and for a merged system	
Size of clock group valid FIFO	Four stages (source synchronous or other) clocks to occur before the clock that completes the Clock Group Valid signal for that group.	
Source synchronous clock alignment window	Channel-to-channel skew only	
Source synchronous clock reset	The Clock Group Valid FIFOs can be reset in the following ways:	
	1. By the overflow of a presettable (0-255) 8-bit counter that counts by the 1.25 ns system clock or by the master heartbeat clock (synchronous or asynchronous). An active edge on a source synchronous clock places the reset count to its preset value. The timing is such that an active clock edge will clear the Clock Group Reset before arriving at the FIFO so that no data is lost.	
	2. By enabling an external reset. In this mode, one of the clock signals must be traded on the master module to act as a level-sensitive reset input. Any one of the clocks can be chosen and a polarity selection is available. This mode affects all Clock Group Complete circuits.	
	The two modes cannot be intermixed; one or the other must be chosen.	

Table 8: Source synchronous sampling

Table 9: Clocking state machine

Characteristic	Description
Pipeline delays	Each signal can be individually programmed with a pipeline delay of 0 through 31 active clock edges. The value held by the pipelines at the beginning of an acquisition can be preset high or low (all stages of a particular signal are forced to the same value).

Table 10: Trigger system

Characteristic	Description	
Triggering resources		
Word, range, and channel-to-channel compare recognizers	24, word/range recognizers. The word recognizers can be traded off to form full width, double-bounded range recognizers. The following selections are available:	
	24 word recognizers	0 range recognizers
	21 word recognizers	1 range recognizer
	18 word recognizers	2 range recognizers
	15 word recognizers	3 range recognizers
	12 word recognizers	4 range recognizers
	9 word recognizers	5 range recognizers
	6 word recognizers	6 range recognizers
	3 word recognizers	7 range recognizers
	0 word recognizers	8 range recognizers

Table 10: Trigger system (cont.)

Characteristic	Description
Range recognizer channel order	From most-significant probe group to least-significant probe group:
	Missing channels for modules with fewer than 136 channels are omitted. When merged, the range recognition extends across the two modules. The master module contains the most-significant groups.
TLA7BB4, TLA7BC4	CK3 Q1 C3 C2 C1 C0 Q3 Q2 E3 E2 E1 E0 CK0 Q0 A3 A2 D3 D2 CK1 CK2 A1 A0 D1 D0
TLA7BB3	CK3 Q1 C3 C2 C1 C0 CK0 Q0 A3 A2 D3 D2 CK1 CK2 A1 A0 D1 D0
TLA7BB2	CK3 CK0 C3 C2 A3 A2 CK1 CK2 A1 A0 D1 D0
Glitch detector (Asynchronous	Any signal can be individually enabled to detect a glitch.
clock mode)	A glitch is two or more signal transitions on a signal between the Asynchronous sample points.
Minimum detectable glitch pulse	Minimum input pulse width (single-signal)
width (Typical)	200 ps for high-density probes
	250 ps for general purpose probes
Setup and hold violation detector (Synchronous clock mode)	Any signal can be individually enabled to detect a setup or hold violation. The window range is from 7.5 ns before the clock edge to 7.5 ns after the clock edge. This range may be shifted towards the positive region by 0 ns, 2.5 ns, 5 ns, or 7.5 ns. With a 0 ns shift the range is [+7.5,-7.5] ns, with a 2.5 ns shift it is [+10,-5] ns, with a 5 ns shift the range is [+12.5, -2.5] ns, and with a shift of 7.5 ns the range is [+15, 0] ns. The sample point selection region is the same as the setup and hold violation window.
	The size of each signal's setup/hold violation window can be individually programmed. The maximum width of the window (and granularity of adjustment) depends on the decimation setting:
	@ 20 ps granularity, max window size = 2.5 ns
	@ 40 ps granularity, max window size = 5.0 ns
	@ 80 ps granularity, max window size = 15 ns
	Any setup value is subject to variation of up to the skew specification. Any hold value is subject to variation of up to the skew specification.
	Setup and hold detection is restricted to a group rather than individual signals; you can define individual groups for individual signals.
Transition detector	24, any signal can be individually enabled or disabled to detect a rising or falling transition (or either) between the current valid data sample and the previous valid data sample.
	Transition detection is restricted to a group rather than individual signals; you can define individual groups for individual signals.
Fast counter/timers	Two fast counter/timers. Each is 48 bits wide and can be clocked up to 800 MHz.
	maximum count = 2 ⁴⁸ –1 (including sign bit)
	maximum time = $\sim 3.5 \times 10^5$ sec = ~ 4 days
	Zero clock TC latency, with zero reset latency
	Counters can be reset, do nothing, incremented or decremented.
	Timers can be reset, not changed, started or stopped.
	····
Signal In [3:0]	Mainframe backplane input signal

Characteristic	Description	
Trigger In	Mainframe backplane input signal that causes both the main acquisition and MagniVu acquisition to trigger (if they are not already triggered).	
Active trigger resources	24 maximum (excluding the counter/timers and Signal In)	
Trigger states	16	
Trigger state machine (TSM)	DC to 800 MHz (1.25 ns)	
sequence rate	For data rates of 800 Mb/s or less, the TSM evaluates one data sample per TSM clock. For data rates greater than 800 Mb/s, the TSM evaluates multiple data samples per TSM clock up to the maximum acquired data rate.	
Trigger machine actions		
Main acquisition trigger	Trigger the main acquisition memory.	
Main trigger position	Programmable to any data sample (1.25 ns boundaries).	
MagniVu trigger	Triggering of MagiVu memory is controlled by the main acquisition trigger machine.	
MagniVu trigger position	Programmable within 1.25 ns boundaries and separate from the main acquisition memory trigger position.	
Increment and decrement counter	Either of the two counter/timers used as counters can be incremented or decremented.	
Snapshot recognizer	Loads the current acquired data sample into the reference value of the word recognizer via a trigger machine action. All the data signals are loaded into their respective word recognizer reference register on a one-to-one manner.	
	With merged modules, the snapshot recognizer only works with the master module.	
Snapshot load latency	325 ns	
Start/stop timer	Either of the two counter/timers used as a timer can be started or stopped.	
Reset counter/timer	Either of the counter/timers can be reset.	
	When a timer is reset, the timer continues in the started or stopped state it was in prior to the reset.	
Signal Out[3:0]	A signal sent to the backplane to be used by other modules.	
Trigger Out	A signal sent to the backplane to trigger other modules.	
Probe/Trigger/Backplane delay rela	itionships	
Delay time from probe tip to multiplex Signal Out (TLA7Bxx module front panel analog output connector) (<i>Typical</i>)	9.45 ns, ± 500 ps	
Delay time from probe tip to trigger machine action (<i>Typical</i>)	1254 ns + Sample error	
Delay time from trigger machine	Driving Signal 3:4 35 ns	
action to Signal Out (TLA7Bxx module P2 connector) (<i>Typical</i>)	Driving Signal 2:1 35 ns	
Delay time from trigger machine action to Trigger Out (TLA7Bxx module P2 connector) (<i>Typical</i>)	38 ns	

Table 10: Trigger system (cont.)

Table 10: Trigger system (cont.)

	aracteristic Desc
le CLK ¹	ay time from Signal In to trigger Signa chine action (not used as ARM) <i>bical</i>)
	ay time from Signal In (TLA7Bxx 53 ns dule P2 connector) to trigger chine action (used as ARM) <i>bical)</i>
	ay time from Trigger In 38 ns A7Bxx module P2 connector) rigger machine action <i>(Typical)</i>
	rage control
ition can use any of the trigger fined in the current trigger	
initially turned on (default),	Globa or off.
Storage may be turned on or off, or only the current sample may be stored. Event storage control overrides any global storage commands.	
l sample.	ck storage When
k storage is disallowed when	is allows users to store a group This h amples around a valid data glitch aple when storage control is d.)
Glitch violation information can be stored to acquisition memory with each data sample when asynchronous sampling is used. The acquisition data storage size is reduced by half when this mode is enabled (the other half holds the violation information). The fastest asynchronous sampling rate when Glitch violation storage is enabled is 1.25 ns.	
The acquisition memory can be enabled to store setup and hold violation information with each data sample when synchronous sampling is used. The acquisition data storage size is reduced by one half when this mode is enabled (the other half holds the violation information). The maximum sync clock rate in this mode is 750 MHz.	
on data storage siz	data s by on

1 Sample CLK is the delay due to logic analyzer sampling. For asynchronous sampling, this delay is equal to the internal sampling period. For synchronous sampling, this delay is equal to time until the next active clock edge.

Table 11: MagniVu feature

Characteristic	Description
MagniVu memory depth	128K per channel
	This acquisition memory is separate from the main acquisition memory.
MagniVu sampling period	Data is asynchronously sampled and stored every 20 ps in a separate high resolution memory. The storage speed can be changed (by software) to 40 ps, 80 ps, 160 ps, 320 ps, or 640 ps (with no loss in memory depth) so that the MagniVu memory covers more time at a lower resolution.

Characteristic	Description	
Number of merged modules	2, 3, 4, or 5 adjacent modules can be merged. Modules can have unequal channel widths and channel depths.	
	When two modules are merged, the master is in the lower numbered slot.	
	When three modules are merged, the master is in the center slot (slave on each side).	
	When four modules are merged, the master is in the next to lowest numbered slot.	
	When five modules are merged, the master is in the center slot (two slaves on each side).	
Number of channels after merging	Sum of all channels available on each of the merged modules including clocks and qualifiers. No channels are lost when modules are merged.	
Merged system acquisition depth	The channel depth is equal to that of the shallowest module.	
Number of clock and qualifier channels after merging	The qualifier signals on the slave modules can only be used as data signals. They cannot influence the actual clocking function of the logic analyzer (for example, log strobe generation).	
	The clock signals on the slave modules can capture data on those modules for source-synchronous applications. Each slave module contributes four additional clock signals to the merge set. All clock and qualifier signals are stored to acquisition memory.	
Merged system triggering resources	Same as a single module except for range recognizers and the snapshot recognizer. The main difference is that for word recognizers, setup and hold violation detector, glitch detector, and transition detectors, the width is increased to equal the merged signal width. The range recognizer width will increase to the merged signal width up to three modules. Range recognizers are limited to a maximum of four when merged. The Snapshot recognizer only works with the master module in merged module configurations.	

Table 12: Merged modules

Table 13: Data placement

Characteristic	Description	
System time zero placement error	±1.25 ns + Mainframe backplane 10 MHz skew	
(Typical)	This specifies how well TLA7Bxx modules can place system time zero. All of the stored acquisition data is referenced to this point.	
Data correlation error (Typical)	±50 ps + System time zero placement error	
	The maximum error in being able to place data to the System Time Zero mark.	
	Error sources include:	
	System time zero placement error	
	400 MHz clock variation	
Relative data timestamp accuracy	±100 ps + Sample uncertainty + mainframe backplane 10 MHz clock jitter/tolerance	
(Typical)	A timestamp value relative to System time zero is stored with every data sample.	
	This specification can be used to indicate the accuracy of a time measurement between samples. When measuring between the samples, only the time difference between samples should be used to indicate the accuracy. For example, if one sample has a timestamp of 1 hour, and another sample has a timestamp of 1 hour and 10 ms, then 10 ms is the period of time used to determine the amount of error caused by the 10 MHz clock tolerance.	
Timestamp counter resolution and	20 ps resolution	
duration	4.17 days duration	

Table 14: NVRAM

Characteristic	Description	
Nonvolatile memory retention time (Typical)	Battery is integral to the NVRAM. Battery life is >10 years.	
	The length of time that calibration constants and other information stored in NVRAM is retained in the absence of power to the instrument.	

Table 15: Mechanical

Characteristic Construction material		Description	
		Chassis parts constructed of aluminum alloy; front of instrument is constructed of plastic laminated to steel front panel; circuit boards constructed of glass-laminate. Cabinet is aluminum.	
Weight	TLA7BB4, TLA7BC4	5 lb. 6 oz. or 2.45 kg	
	TLA7BB3	5 lb. 4 oz. or 2.4 kg	
	TLA7BB2	5 lb. 0.5 oz. or 2.3 kg	
Overall dimensions	Height	10.32 in.	
	Width	2.39 in. (Width increases by 0.41 in. when the merge connector is in the "up"	
	Depth	position.)	
		14.70 in.	

Performance Verification Procedures

This section contains procedure for performance verification of the logic analyzer. Generally, you should perform these procedures once per year or following repairs that affect certification.

The performance verification procedures check the following specifications:

- Threshold Accuracy
- Setup/Hold Window Size

Test Equipment

The procedures in this section use external, traceable signal sources to test the specifications marked with the \checkmark symbol. These specifications are checked directly (or indirectly) by using the performance verification procedures in this section. For convenience, you can also return your TLA7Bxx module to your nearest Tektronix location to have Tektronix perform these procedures.

To complete the performance verification procedures, you will need the equipment listed in the following table:

Test equipment or fixture	Requirements	Example
Precision voltage reference or a DC signal generator and precision digital voltmeter	(accurate to within ±5 mV)	
Logic analyzer probe	For Threshold Accuracy Test	P6810
	For Setup and Hold Test	P6800 or P6900 series probe
Threshold Accuracy test fixture	One required. (See page 14, <i>Threshold Accuracy Test</i> <i>Fixture.</i>) Warm-up time: 30 minutes	
TLACAL software	Refer to the <i>TLA7000 Series</i> <i>Logic Analyzer Installation</i> <i>Manual</i> for information on installing and using the TLACAL software.	
Deskew fixture	Includes coaxial cable with SMA connector. Use deskew fixture appropriate for your P6800 or P6900 probe.	
P6800 Deskew fixture		Tektronix part number 020-2942-00
P6900 Deskew fixture		Tektronix part number 020-2940-00

Table 16: Test equipment

Threshold Accuracy Test Fixture

Use this fixture to gain access to the logic analyzer probe pins. The fixture connects all ground pins together, and all signal pins together.

Equipment Required

You will need the following items to build the test fixture:

Item	Description	Example part number
Square-pin strip	0.100 x 0.100, 2 x 8 contacts (or two 1 x 8 contacts)	SAMTEC part number TSW-102-06-G-S
Wire	20 gauge	
Soldering iron and solder	50 W	

Build Procedure Use the following procedure to build the test fixture.

- 1. Set the square-pin strip down and lay a wire across one row of pins on one side of the insulator as shown. Leave some extra wire at one end for connecting to a test lead. (See Figure 1.)
- 2. Solder the wire to each pin in the row.
- **3.** Repeat for the other row of pins.

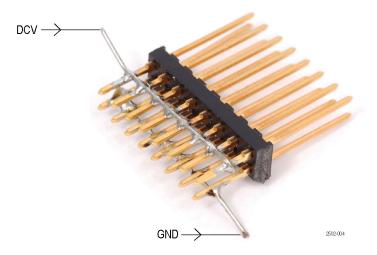


Figure 1: Threshold Accuracy test fixture

Threshold Accuracy Test

This procedure verifies the threshold voltage accuracy of the logic analyzer.

	Equipr	nent required	Precision voltage reference or a DC signal generator and precision digital voltmeter (accurate to within ±5 mV) Threshold Accuracy test fixture P6810 Logic analyzer probe	
	Prereq	uisites	Warm-up time: 30 minutes	
Test Equipment Setup	Connect a P6810 probe from the logic analyzer to the voltage source, using the Threshold Accuracy test fixture. If the voltage source does not have the required output accuracy, use a multimeter with the required accuracy to verify the voltage output levels specified in the procedure.			
TLA7Bxx Setup	To set up the logic analyzer for this test, you must define the characteristics of the channel that you are testing, and then set the trigger parameters:			
	1. 0	pen the Setup window.		
		In the Group column, enter a name for the probe group that you are testing ("Test" in the example).		
	a.	Define the signals for	the group that you are testing.	
	b.	Set the sampling to As	synchronous, 1.25 ns.	
	c.	Set Acquire to Sample	·s.	
	d.	Set the Samples per Si	gnal to 128 K or less.	
	рі		and select the Power Trigger tab. Create a trigger ogic analyzer when it doesn't see all highs or all	
	a.	Click the If Then butto	on.	
	b.	Set the channel definit page 16.)	ion to match the figure shown. (See Figure 2 on	
	c.	After you set the chan	nel definitions, click OK.	

CI	ause l	Definition	- LA 1 Stat	e 1.1			×
	lf						
		Group	🖌 Test	✓ !=	✓ 00	*	
	And	Group	✓ Test	✓ !=	✓ FF	~	
							ß
1	Then					Group Radix	
		Trigger		*		Hex 🗸]
						Event Name (optional)	
		ОК	Cancel		Add	Delete	Help

Figure 2: Setting trigger parameters

- **Verification Procedure** Complete the following steps to complete this procedure. Record the results on the copy of the Calibration Data Sheet.
 - 1. Go to the Setup window of the logic analyzer and set the probe threshold voltages to 4 V.
 - 2. Set the voltage source to 3.875 V.
 - 3. Start the logic analyzer and verify that it does not trigger.
 - 4. Increase the voltage in 10 mV steps, waiting at least 3 seconds between steps to make sure that the logic analyzer continues to run without triggering. Continue until the logic analyzer triggers and then record the voltage.
 - 5. Set the voltage source to 4.125 V.
 - 6. Start the logic analyzer and verify that it does not trigger.
 - 7. Decrease the voltage in 10 mV steps, waiting at least 3 seconds between steps to make sure that the logic analyzer continues to run without triggering. Continue until the logic analyzer triggers and then record the voltage.
 - 8. Add the two voltage values and divide by two. Verify that the result is $4.00 \text{ V} \pm 75 \text{ mV}$. Record the voltage on the Calibration Data Sheet.
 - 9. Go to the Setup window and set the logic analyzer threshold voltages to -2.0 V.
 - 10. Repeat steps 3 through 8 for -2.105 V and -1.895 V.
 - 11. Add the two voltage values and divide by two. Verify that the result is $-2.00 \text{ V} \pm 55 \text{ mV}$. Record the voltage on the Calibration Data Sheet.
 - **12.** Repeat the procedure for each probe channel group that you want to verify.

Setup & Hold Test

This test uses the Verification part of the TLA7Bxx deskew procedure to verify the setup and hold time. The complete deskew procedures are described in the *TLA7000 Series Logic Analyzers Installation Manual*. The manual is available on your TLA Documentation CD and on the Tektronix Web site. Refer to the installation manual, to install the TLACAL software.

NOTE. The deskew procedures require the appropriate TLACAL software and deskew test fixture, which are described in the TLA7000 Series Logic Analyzer Installation Manual.

The following procedure describes the Verification part of the deskew procedure. You should be able to run the Verification procedure without performing the full deskew procedure. If any failures occur, try running the full deskew procedure as described in the *TLA7000 Series Logic Analyzer Installation Manual* and then try the Verification procedure again.

- **1.** Close the TLA application if it is running.
- 2. Double-click the TLACAL icon on the desktop to start the software.
- 3. When the TLA Connection dialog box appears, connect to your instrument.

The TLACAL window appears on your desktop. (See Figure 3.)

🗱 TLACAL		
Slot 1-2: Slot 3-4: Slot 5-6: Slot 7-8: Slot 9-10: Slot 11-12:	TLA7BB4 TLA7BB4 TLA7BB4 TLA7BB4 TLA7BB4 TLA7BC4	Close About TLACAL Select a module from the list to the left. For merged set adjustments, select any module in the merged set. Verification Adjustment

Figure 3: TLACAL startup window

- 4. In the dialog box, select the module that you want to test.
- **5.** Click the Verification button to start the software. The Verification procedure dialog box appears. (See Figure 4.)

Verification		×
Verification Procedures Slot 11-12 - TLA7BC4 Serial #: B011300 Select Setup and Hold to verify the deskew settings of a module and probe combination.	Setup and Hold Procedure Setup and Hold	
	< Back Next > Cancel	

Figure 4: Verification procedure dialog box

- 6. Verify that Setup and Hold is selected at the top of the dialog box.
- 7. Click the Next button at the bottom of the dialog box to display the probe connection instructions.
- **8.** Follow the on-screen instructions to connect the probes, clock cable, and the deskew fixture.

9. Click the Next button to begin the procedure and follow the on-screen instructions. The software will begin the verification procedure and display the results in the dialog box.

The procedure has you connect and disconnect probes and the deskew fixture. After you complete the procedures, make sure that the correct probes are connected for your configuration. These procedures are only valid for the probes connected to the specific probe connectors. If you change the probe connections, you must redo the procedures.

NOTE. If any failures occur, check your probe or deskew fixture connections and reseat them, if necessary. Then click the Back button to restart the test. If the failures continue to occur, try running the Deskew and Adjustment procedures as described in the TLA7000 Series Logic Analyzer Installation Manual. Try running the Verification procedure again.

10. Click the Finish button to finish the procedure and return to the startup window.

Functional Check Procedures

Functional Verification

Functional verification procedures consist of running the Power-on diagnostics, Extended diagnostics, and acquiring a signal from the SUT.

Power-on and Extended Diagnostics

Do the following steps to run the power-on and extended diagnostics:

NOTE. Running the extended diagnostics will invalidate any acquired data. If you want to save any of the acquired data, do so before running the extended diagnostics.

You will need a mainframe with a logic analyzer module installed in the mainframe.

Perform the following tests to complete the functional verification procedure:

NOTE. If you control your logic analyzer from a remote location, make sure that you select Run Power-on Diagnostics in the TLA Connection dialog box. Otherwise the instrument will bypass the power-on diagnostics.

1. If you have not already done so, power on the instrument.

The instrument runs the power-on diagnostics each time that you power on the instrument. If any failures occur, the diagnostic window will appear.

- 2. Go to the System menu and select Calibration and Diagnostics.
- 3. Scroll through the list of tests and verify that all power-on diagnostics is pass.

NOTE. Allow the instrument to warm up for 30 minutes before continuing with the *Extended diagnostics.*

4. Click the Extended Diagnostics tab.

NOTE. Disconnect any probes connected to your logic analyzer module. If probes are connected while you run the extended diagnostics, the floating stimulus test will fail. If you do not want to remove the probes, disregard the results of this test. All other tests should pass.

- 5. Select the top-most selection for your module in the list of tests. For example, if your logic analyzer module is installed in Slot 3 of your mainframe, select Slot 3:TLA7BB4 LA.
- **6.** Select the type of test that you want to run (One Time, Continuous, or Until Fail).
- 7. Click Run to start the tests.

All tests that displayed an "Unknown" status will change to a Pass or Fail status depending on the outcome of the tests.

8. After the tests have been completed, scroll through the list and verify that the instrument passes all tests.

NOTE. Installing a module in the mainframe provides a means of verifying connectivity and communication between the module and the mainframe. If the instrument fails any test, try using a different module and repeat the tests to isolate the problem to the mainframe or to the module.

Acquire a Signal To verify that the logic analyzer module can acquire signals, connect the logic analyzer to a known good signal source through one of the logic analyzer probes.

Power on the logic analyzer and the SUT.

Go to the logic analyzer Setup window and verify that the signal activity connectors show activity for any signals connected to the SUT. The logic analyzer always acquires signals. If the signal activity indicators show the correct activity for the SUT, you have verified that the logic analyzer acquired a signal from the SUT and displayed the information in the Setup window.

NOTE. If there is no signal activity, verify that the threshold setting is correct for your circuit.