TekExpress[®] MHL Advanced Analysis and Compliance Solution Online Help

077-0620-03

TekExpress[®] MHL Advanced Analysis and Compliance Solution Online Help

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

TekExpress is a registered trademark of Tektronix, Inc.

TekExpress MHL Advanced Analysis and Compliance Solution Online Help, 076-0256-03.

Contacting Tektronix

Tektronix, Inc. 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- = Worldwide, visit <u>www.tektronix.com</u> to find contacts in your area.

Table of Contents

Getting Help and Support

Technical Support	

Overview and Key Specifications

Overview and Key Specifications.	3
Supported Tests: MHL Transmitter	5
Supported Tests: MHL Receiver	8
Supported Resolutions: MHL Transmitter	10
Supported Resolutions: MHL Receiver	11

Operating Basics

Equipment Connection Setup (MHL Transmitter)	14
Clock and Data Tests	14
Equipment Connection Setup (MHL Receiver)	18
Sink Tests	18
Dongle Tests	23
Application Directories and Usage	27
View Test-Related Files	28
File Name Extensions	29

Getting Started

Installing the Software	
Compatibility	31
Minimum System Requirements	31
Install the Software	32
Activate the License	34
View Version and License Information	35
Starting the Software	
Start the Application	35
Options Menu	36
View Connected Instruments: the Instrument Control Settings	37
Application Controls	39
Exit the Application	43

Application Basics

Application Basics

Setting Up Tests

Setting Up Tests: the Setup Panel	47
Selecting Device Parameters: the DUT tab	52
Choosing Tests: the Test Selection tab	62
Selecting Acquisitions	
Acquiring Waveforms: the Acquisitions tab (MHL Transmitter only)	67
Use Prerecorded Waveforms for Analysis (MHL Transmitter only)	72
Acquire Live Waveforms for Analysis (MHL Transmitter only)	73
Configuring Tests	
Configuring Tests: the Configuration Screen	74
Compliance Mode or User Defined Mode	78
Measurement Parameter Descriptions (MHL Transmitter)	79
Measurement Parameter Descriptions (MHL Receiver)	83

Running Tests

Before You Click Start	85
Pre-Run Check List	87
Configure Email Notification	87
Running the Tests and Viewing their Progress: the Status Panel	89

Viewing Results

Viewing Test Results: the Results Panel	95
---	----

Configuring and Viewing Reports

Configuring and Viewing Repor	: the Reports Panel	97
-------------------------------	---------------------	----

Saving and Recalling Test Setups

About Saving and Recalling Test Setups	101
Saving a Test Setup	101
Recalling a Saved Test Setup	102
Creating a New Test Setup Based on an Existing One	102
Deleting a Test Setup	103

TekExpress Programmatic Interface

About the Programmatic Interface	105
Requirements for Developing TekExpress Client	105
Remote Proxy Object	107
Client Proxy Object	107
Client Programmatic Interface Example	109
Program Example	112
MHL Application Commands	
About TekExpress MHL Application Commands	116

Connect Through an IP Address	122
Lock the Server	123
Disable the Popups	124
Set or Get the DUT ID	125
Set the Configuration Parameters for a Suite or Measurement	126
Query the Configuration Parameters for a Suite or Measurement	129
Select a Measurement	131
Select a Suite	138
Set Pixel Mode	138
Set Resolution	139
Set Termination Source Method	141
Set Termination Voltage	142
Run with Set Configurations or Stop the Run Operation	143
Handle Error Codes	144
Get or Set the Timeout Value	145
Wait for the Test to Complete	145
After the Test is Complete	148
Save, Recall, or Check if a Session is Saved	151
Unlock the Server	152
Disconnect from the Server	152

Algorithms

About Algorithms	153
MHL Transmitter Group 1: Clock Tests	
3.1.1.1: Standby Output Voltage Test - V _{OFF}	153
3.1.1.5: Common-Mode Output Swing Voltage Test - V _{CMSWING}	155
3.1.1.7: Common-mode Rise and Fall Times Test - T _{R_CM} , T _{F_CM}	156
3.1.1.10: MHL Clock Duty Cycle Test – 24 Bit or Packed Pixel Mode (CTS 1.X); Normal Mode (C	CTS
2.0)	158
3.1.1.11: MHL Clock Jitter Test (CTS 1.X) – in Normal Mode (CTS 2.0)	159
3.1.1.14: MHL Clock Duty Cycle Test - Packed Pixel Mode	160
3.1.1.15: MHL Clock Jitter Test in Packed Pixel Mode	160
MHL Transmitter Group 2: Data Tests	
3.1.1.2: Single-Ended High Level Voltage Test - V _{SE_HIGH}	160
3.1.1.3: Single-Ended Low Level Voltages Test - V _{SE LOW}	161
3.1.1.4: Differential Output Swing Voltage Test - V _{DF SWING}	163
3.1.1.6: Differential Rise and Fall Times Test - T _{R DF} , T _{F DF}	164
3.1.1.8: Differential Intra-Pair Skew Test - T _{SKEW DF}	165
3.1.1.12: MHL Data Eye Diagram Test (CTS 1.X) – in Normal Mode (CTS 2.0)	166
3.1.1.16: MHL Data Eye Diagram Test in Packed Pixel Mode	167
MHL Receiver Group 1: Sink Tests	
4.1.1.1: Input Signal DC Voltage Level Tolerance Test	167

4.1.1.2: Input Signal Minimum and Maximum Swing Voltages Tolerance Test	170
4.1.1.3: Intra-Pair Skew Tolerance Test	174
4.1.1.4: Jitter Tolerance Test (CTS 1.X) – in Normal Mode (CTS 2.0)	175
4.1.1.8: Jitter Tolerance Test in Packed Pixel Mode	177
MHL Receiver Group 2: Dongle Tests	
5.1.1.1: Input Signal Single-Ended Voltage Level Tolerance	177
5.1.1.2: Input Signal Minimum and Maximum Swing Voltage Tolerance Test	180
5.1.1.3: Intra-Pair Skew Tolerance Test	184
5.1.1.4: Jitter Tolerance Test (CTS 1.X) – in Normal Mode (CTS 2.0)	186
5.1.1.9: Jitter Tolerance Test in Packed Pixel Mode	188
Reference	

MHL Data Eye Diagram Test - Mask Movement	189
Map the My TekExpress Folder	191

Index

Technical Support

Tektronix values your feedback on our products. To help us serve you better, please send us your suggestions, ideas, or comments on your application or oscilloscope. Contact Tektronix through mail, telephone, or the Web site, <u>www.tektronix.com</u>.

When you contact Tektronix Technical Support, please include the following information (be as specific as possible):

General Information

- All instrument model numbers
- Hardware options, if any
- Probes used
- Vour name, company, mailing address, phone number, FAX number
- Please indicate if you would like to be contacted by Tektronix about your suggestion or comments.

Application Specific Information

- Software version number
- Description of the problem such that technical support can duplicate the problem
- If possible, save the setup files for all the instruments used and the application.
- If possible, save the TekExpress setup files, log.xml, *.TekX (session files and folders), and status messages text file.
- If possible, save the waveform on which you are performing the measurement as a .wfm file.

Overview and Key Specifications

The TekExpress MHL Advanced Analysis and Compliance Solution gives you the tools to easily run Mobile High-definition Link (MHL) tests under the MHL Compliance Test Specifications 1.X and 2.0. It provides a complete and reliable solution for quick testing.

The application functionality is generally divided into two parts: the MHL Transmitter Suite, and the MHL Receiver Suite. You can select which suite and which version of the CTS you would like to use by clicking on the <u>Setup Panel (see page 47)</u> and clicking the <u>DUT tab (see page 52)</u>. See <u>Application</u> Basics (see page 45) for more information.

Supported Tests:

TekExpress MHL Transmitter supports these automated Clock and Data Tests. (see page 5)

TekExpress MHL Receiver supports these automated Sink and Dongle Tests. (see page 8)

Additional tests may be performed manually by loading the test patterns on the AWG.

Supported Resolutions:

MHL Transmitter supports these resolutions. (see page 10)

MHL Receiver supports these resolutions. (see page 11)

MHL Sink Protocol Tests based on AWG direct synthesis patterns

NOTE. Contact your local Tektronix representative for these manual test patterns.

• 4.2.1.1: Character Synchronization

This test confirms that the Sink DUT synchronizes if the data stream provides only minimum length Control Periods.

■ 4.2.1.2: Packet Types

This test confirms that the Sink DUT accepts all valid packet types.

■ 4.2.2.1: Video Formats

This test verifies that the sink DUT supports the video formats with no distortion.

■ 4.2.2.2: Pixel Encoding

This test verifies that the sink supports RGB pixel encoding.

• 4.2.2.3: Video Quantization Range

This test verifies that the Sink has the correct QY and QS bits in the Video Capability Data Block, and the Sink displays with correct Video Quantization Range.

■ 4.2.3.1: Audio Test IEC 60958 / IEC61937

This test verifies that the Sink supports the required Audio formats and reproduces audio properly.

■ 4.2.3.2: Audio Clock Regeneration

This test verifies that the Sink properly regenerates audio when different Audio Clock Regeneration parameters are used.

MHL Dongle Protocol Tests based on AWG direct synthesis patterns

NOTE. Contact your local Tektronix representative for these manual test patterns.

■ 5.2.1.1: Character Synchronization

This test confirms that the Dongle DUT synchronizes if the data stream provides only minimum length Control Periods.

■ 5.2.1.2: Packet Types

This test confirms that the Dongle DUT accepts all valid packet types.

■ 5.2.2.1: Video Formats

This test verifies that the Dongle DUT supports the video formats with no distortion.

■ 5.2.2.2: Pixel Encoding

This test verifies that the Dongle supports various pixel encodings.

■ 5.2.2.3: Video Quantization Range

This test verifies that the Dongle has correct QY and QS bits in the Video Capability Data Block, and the Dongle with A/V Display displays with correct Video Quantization Range.

5.2.3.1: Audio Test IEC 60958 / IEC61937

This test verifies that the Dongle converts audio properly.

■ 5.2.3.2: Audio Clock Regeneration

This test verifies that the Dongle properly regenerates audio when different Audio Clock Regeneration parameters are used.

MHL Cable Assembly Electrical Tests

NOTE. Contact your local Tektronix representative for the MOI of cable tests.

- Impedance
- Intra-Pair Skew

- Delay
- Insertion Loss
- Differential and Common Mode Conversion

See also:

- Application Basics (see page 45)
- Equipment Connection Setup MHL Transmitter (see page 14)
- Equipment Connection Setup MHL Receiver (see page 18)
- Install the Software (see page 32)
- Application Directories and Usage (see page 27)
- File Name Extensions (see page 29)

Supported Tests: MHL Transmitter

TekExpress MHL Transmitter supports the following automated Clock and Data tests:

These tests are supported for CTS Version 1.X:

Clock Tests

■ 3.1.1.1: Standby (Off) Output Voltage Test - V_{OFF}

This test measures that the MHL source output voltage is within the specified level limits when the source device is in Standby State or power off mode as specified in the CDF.

■ 3.1.1.5: Common-mode Output Swing Voltage Test - V_{CMSWING}

This test confirms that common-mode output voltage swing amplitude is within the specified limits when the DUT operates in normal mode.

■ 3.1.1.7: Common-mode Rise and Fall Times Test - T_{R CM}, T_{F CM}

This test confirms that the rise time and fall time of the common-mode output signal are within the specified limits.

■ 3.1.1.10: MHL Clock Duty Cycle Test - 24 Bit or Packed Pixel Mode

This test confirms that the MHL clock duty cycle in 24-bit or packed pixel mode does not exceed the limits allowed by the specification.

■ 3.1.1.11: MHL Clock Jitter Test

This test confirms that the MHL Clock output does not contain excessive jitter larger than the limit allowed by the specification.

Data Tests

■ 3.1.1.2: Single-ended High Level Voltage Test - V_{SE HIGH}

This test confirms that the single-ended high output voltage level is within the specified limits when the DUT is in normal mode.

■ 3.1.1.3: Single-ended Low Level Voltage Test - V_{SE_LOW}

This test confirms that the single-ended low output voltage level is within the specified limits when the DUT is in normal mode.

■ 3.1.1.4: Differential Output Swing Voltage Test - V_{DF_SWING}

This test confirms that the differential output voltage swing amplitude is within the specified limits when the DUT is in normal mode.

■ 3.1.1.6: Differential Rise and Fall Times Test - T_{R_DF}, T_{F_DF}

This test confirms that the rise and fall times of the differential output signal are equal to or larger than the minimum limit.

■ 3.1.1.8: Differential Intra-Pair Skew Test - T_{SKEW_DF}

This test confirms that the timing skew in the differential signal pair is below the specified limits.

■ 3.1.1.12: MHL Data Eye Diagram Test

This test confirms that the MHL Data output has signal quality that meets the eye opening required by the specification.

NOTE. If the MHL Data Eye diagram test fails due to mask hits, TekExpress MHL Solution provides the option to the user to move the mask horizontally to achieve zero or minimal hits. Refer to the <u>Mask</u> <u>Movement (see page 189)</u> procedure.

These tests are supported for CTS Version 2.0:

Clock Tests

■ 3.1.1.1: Standby (Off) Output Voltage Test - V_{OFF}

This test measures that the MHL source output voltage is within the specified level limits when the source device is in Standby State or power off mode as specified in the CDF.

■ 3.1.1.5: Common-mode Output Swing Voltage Test - V_{CMSWING}

This test confirms that common-mode output voltage swing amplitude is within the specified limits when the DUT operates in normal mode.

■ 3.1.1.7: Common-mode Rise and Fall Times Test - T_{R_CM}, T_{F_CM}

This test confirms that the rise time and fall time of the common-mode output signal are within the specified limits.

■ 3.1.1.10: MHL Clock Duty Cycle Test - Normal Mode

This test confirms that the MHL clock duty cycle does not exceed the limits allowed by the specification in Normal Mode.

■ 3.1.1.11: MHL Clock Jitter Test - Normal Mode

This test confirms that the MHL Clock output does not contain excessive jitter greater than the limit allowed by the specification in Normal Mode.

■ 3.1.1.14: MHL Clock Duty Cycle Test - Packed Pixel Mode

This test confirms that the MHL clock duty cycle in packed pixel mode does not exceed the limits allowed by the specification.

3.1.1.15: MHL Clock Jitter Test - Packed Pixel Mode

This test confirms that the MHL Clock output does not contain excessive jitter larger than the limit allowed by the specification in PackedPixel Mode.

Data Tests

■ 3.1.1.2: Single-ended High Level Voltage Test - V_{SE_HIGH}

This test confirms that the single-ended high output voltage level is within the specified limits when the DUT is in normal mode.

3.1.1.3: Single-ended Low Level Voltage Test - V_{SE_LOW}

This test confirms that the single-ended low output voltage level is within the specified limits when the DUT is in normal mode.

3.1.1.4: Differential Output Swing Voltage Test - V_{DF_SWING}

This test confirms that the differential output voltage swing amplitude is within the specified limits when the DUT is in normal mode.

3.1.1.6: Differential Rise and Fall Times Test - T_{R_DF}, T_{F_DF}

This test confirms that the rise and fall times of the differential output signal are equal to or larger than the minimum limit.

3.1.1.8: Differential Intra-Pair Skew Test - T_{SKEW_DF}

This test confirms that the timing skew in the differential signal pair is below the specified limits.

■ 3.1.1.12: MHL Data Eye Diagram Test - Normal Mode

This test confirms that the MHL Data output has signal quality that meets the eye opening required by the specification in Normal Mode.

■ 3.1.1.16: MHL Data Eye Diagram Test - Packed Pixel Mode

This test confirms that the MHL Data output has signal quality that meets the eye opening required by the specification in Packed Pixel Mode.

NOTE. If the MHL Data Eye diagram test fails due to mask hits, TekExpress MHL Solution provides the option to the user to move the mask horizontally to achieve zero or minimal hits. Refer to the <u>Mask</u> <u>Movement (see page 189)</u> procedure.

Supported Tests: MHL Receiver

TekExpress MHL Receiver supports the following automated Sink and Dongle tests.

These tests are supported for CTS Version 1.X:

MHL Sink Tests

• 4.1.1.1: Input Signal DC Voltage Level Tolerance Test

This test confirms that the sink device supports input signal DC voltage level allowed by the specification.

• 4.1.1.2: Input Signal Minimum and Maximum Swing Voltages Tolerance Test

This test confirms that the sink device supports input signal DC voltage level and swing voltage allowed by the specification.

■ 4.1.1.3: Intra Pair Skew Tolerance Test

This test confirms that the sink device can tolerate the maximum intra-pair skew allowed by the specification.

■ 4.1.1.4: Jitter Tolerance Test

This test confirms that the sink device can tolerate the maximum clock and data jitter amounts allowed by the specification.

MHL Dongle Tests

5.1.1.1: Input Signal Single-Ended Voltage Level Tolerance Test

This test confirms that the dongle device supports input signal single-ended voltage level allowed by the specification.

5.1.1.2: Input Signal Minimum and Maximum Swing Voltages Tolerance Test

This test confirms that the dongle device supports input signal minimum and maximum swing voltages allowed by the specification.

■ 5.1.1.3: Intra-Pair Skew Tolerance Test

This test confirms that the dongle device can tolerate the maximum intra-pair skew allowed by the specification.

■ 5.1.1.4: Jitter Tolerance Test

This test confirms that the dongle device can tolerate the maximum clock and data jitter amounts allowed by the specification.

These tests are supported for CTS Version 2.0:

MHL Sink Tests

• 4.1.1.1: Input Signal DC Voltage Level Tolerance Test

This test confirms that the sink device supports input signal DC voltage level allowed by the specification.

• 4.1.1.2: Input Signal Minimum and Maximum Swing Voltages Tolerance Test

This test confirms that the sink device supports input signal DC voltage level and swing voltage allowed by the specification.

• 4.1.1.3: Intra Pair Skew Tolerance Test

This test confirms that the sink device can tolerate the maximum intra-pair skew allowed by the specification.

• 4.1.1.4: Jitter Tolerance Test in Normal Mode

This test confirms that the sink device can tolerate the maximum clock and data jitter amounts allowed by the specification in Normal Mode.

■ 4.1.1.8: Jitter Tolerance Test – Packed Pixel Mode

This test confirms that the sink device can tolerate the maximum clock and data jitter amounts allowed by the specification in Packed Pixel Mode.

MHL Dongle Tests

5.1.1.1: Input Signal Single-Ended Voltage Level Tolerance Test

This test confirms that the dongle device supports input signal single-ended voltage level allowed by the specification.

5.1.1.2: Input Signal Minimum and Maximum Swing Voltages Tolerance Test

This test confirms that the dongle device supports input signal minimum and maximum swing voltages allowed by the specification.

■ 5.1.1.3: Intra-Pair Skew Tolerance Test

This test confirms that the dongle device can tolerate the maximum intra-pair skew allowed by the specification.

■ 5.1.1.4: Jitter Tolerance Test – Normal Mode

This test confirms that the dongle device can tolerate the maximum clock and data jitter amounts allowed by the specification in Normal Mode.

■ 5.1.1.9: Jitter Tolerance Test – Packed Pixel Mode

This test confirms that the dongle device can tolerate the maximum clock and data jitter amounts allowed by the specification in Packed Pixel Mode.

Supported Resolutions: MHL Transmitter

CTS 1.X: All of the TekExpress MHL tests can be performed for DUTs operating in resolutions between 25 MHz and 74.25 MHz. Other resolutions that fall within this range can be entered in the Low Resolution and High Resolution fields on the DUT tab of the Setup panel. For instance, a DUT could have any of the following:

Low : 25	High : 25
Low : 25	High : 27
Low : 25	High : 74.25

When Low and High resolutions are the same, the software performs the test at that one resolution.

CTS 2.0: All of the TekExpress MHL tests can be performed for DUTs operating at these data rates (Gbps):

24 Bit mode:

Low : 0.75	High : 2.22
Low : 0.81	High : 2.22

Packed Pixel mode:

Low : 2.97 High : 2.97

Other data rates that fall within this range can be entered in the Low Data Rate and High Data Rate fields on the DUT tab of the Setup panel.

Table 1: Supported resolutions (T	Fransmitter)
-----------------------------------	--------------

Test group	Test name	Supported resolutions
MHL Clock	3.1.1.1: Standby Output Voltage – V _{OFF}	_
	3.1.1.5: Common-mode Output Swing Voltage V _{CMSWING}	Low
	3.1.1.7: Common-mode Rise and Fall Times-T _{R_CM} , T _{F_CM}	High
	CTS 1.X	High
	3.1.1.10: MHL Clock Duty Cycle – 24 Bit or Packed Pixel Mode	
	CTS 2.0	High
	3.1.1.10: MHL Clock Duty Cycle – Normal Mode	
	CTS 1.X	Low and High resolutions
	3.1.1.11: MHL Clock Jitter	
	CTS 2.0	Low and High resolutions
	3.1.1.11: MHL Clock Jitter – Normal Mode	
	3.1.1.14: MHL Clock Duty Cycle – Packed Pixel Mode	High (PP)
	3.1.1.15: MHL Clock Jitter – Packed Pixel Mode	High (PP)

Test group	Test name	Supported resolutions
MHL Data	3.1.1.2: Single-ended High Level Voltage – V _{SE_HIGH}	Low
	3.1.1.3: Single-ended Low Level Voltages – V _{SE_LOW}	Low
	3.1.1.4: Differential Output Swing Voltage – V _{DF_SWING}	Low
	3.1.1.6: Differential Rise and Fall Times – T_{R_DF} , T_{F_DF}	High
	3.1.1.8: Differential Intra-Pair Skew – T _{SKEW_DF}	Low
	CTS 1.X	Low and High resolutions
	3.1.1.12: MHL Data Eye Diagram	
	CTS 2.0	Low and High resolutions
	3.1.1.12: MHL Data Eye Diagram – Normal Mode	
	3.1.1.16: MHL Data Eye Diagram – Packed Pixel Mode	High (PP)

Table 1: Supported resolutions (Transmitter) (cont.)

Supported Resolutions: MHL Receiver

CTS 1.X: All of the TekExpress MHL Receiver tests can be performed for DUTs operating in resolutions of 25, 27 and 74.25 MHz according to the standard. Other resolutions that fall within this range can be entered in the **Low Resolution** and **High Resolution** fields on the **DUT** tab of the Setup panel. Either of the Resolutions can be **High** according to the Manufacturer. For instance, a DUT could have any of the following:

Low : 25	High : 25
Low : 25	High : 27
Low : 25	High : 74.25

CTS 2.0: All of the TekExpress MHL tests can be performed for DUTs operating at these data rates (Gpbs):

24 Bit mode:

Low : 0.75	High : 2.22
Low : 0.81	High : 2.22

Packed Pixel mode:

Low : 2.97 High : 2.97

Other data rates that fall within this range can be entered in the Low Data Rate and High Data Rate fields on the DUT tab of the Setup panel.

Test group	Test name	Supported resolutions
MHL Sink	4.1.1.1: Input Signal DC Voltage Level Tolerance	Highest
	4.1.1.2: Input Signal Minimum and Maximum Swing Voltages Tolerance	Highest
	4.1.1.3: Intra-Pair Skew Tolerance	Highest
	CTS 1.X	Lowest and Highest
	4.1.1.4: Jitter Tolerance	
	CTS 2.0	
	4.1.1.4: Jitter Tolerance in Normal Mode	
	CTS 2.0	Highest
	4.1.1.8: Jitter Tolerance in Packed Pixell Mode	
MHL Dongle	5.1.1.1: Input Signal Single-Ended Voltage Level Tolerance	Highest
	5.1.1.2: Input Signal Minimum and Maximum Swing Voltage Tolerance	Highest
	5.1.1.3: Intra-Pair Skew Tolerance	Highest
	CTS 1.X	Lowest and Highest
	5.1.1.4: Jitter Tolerance	
	CTS 2.0	
	5.1.1.4: Jitter Tolerance in Normal Mode	
	CTS 2.0	Highest
	5.1.1.9: Jitter Tolerance in Packed Pixel Mode	

Table 2: Supported resolutions (MHL Receiver)

Equipment Connection Setup (MHL Transmitter)

You need the following equipment to run MHL Transmitter tests. (For details, see <u>Minimum System</u> Requirements (see page 31)):

- A supported Tektronix oscilloscope (see page 31)
- Two Differential Probes P7313SMA, for Single Ended and Differential tests
- One Differential Probe P7240 for Common Mode tests
- Device under test (DUT)
- Wilder/Tektronix Fixtures
- C-Bus Sink boards

Connection diagrams and the tests they apply to are listed below.

Clock and Data Tests

Table 3: Connection diagram 1 (Transmitter)

3.1.1.4: Differential Output Swing Voltage Test - VDF SWING

3.1.1.5: Common-mode Output Swing Voltage Test - VCMSWING

3.1.1.6: Differential Rise and Fall Times Test -T_{R_DF}, T_{F_DF}

3.1.1.7: Common-mode Rise and Fall Times Test -T_{R_CM}, T_{F_CM}

3.1.1.10: MHL Clock Duty Cycle Test - Normal Mode

3.1.1.11: MHL Clock Jitter Test - Normal Mode

3.1.1.12: MHL Data Eye Diagram Test - Normal Mode

3.1.1.14: MHL Clock Duty Cycle Test - Packed Pixel Mode

3.1.1.15: MHL Clock Jitter Test - Packed Pixel Mode

Table 3: Connection diagram 1 (Transmitter) (cont.)

Table 4: Connection diagram 2 (Transmitter)

3.1.1.2 Single-ended High Level Voltage — VSE_HIGH	
3.1.1.3 Single-ended Low Level Voltages — VSE_LOW	

Table 4: Connection diagram 2 (Transmitter) (cont.)

See Also

- Equipment Connection Setup MHL Receiver (see page 18)
- About Algorithms (see page 153)
- View Connected Instruments (see page 37)

Equipment Connection Setup (MHL Receiver)

You need the following equipment (for details, see Minimum System Requirements (see page 31)):

- A supported Tektronix oscilloscope (see page 31)
- One Differential Probe P7313SMA
- Device under test (DUT)
- Wilder Fixtures
- C-Bus Sink boards
- MHL Signal Generator: AWG 7122B/C with option 01 and 02 or 06 and 08

Connection diagrams and the tests they apply to are listed below.

Sink Tests

.1.1.1: Input Signal DC Voltage Level Tolerance	
.1.1.3: Intra-Pair Skew Tolerance	
TS 1.X	
4.1.1.4: Jitter Tolerance	
TS 2.0	
4.1.1.4: Jitter Tolerance in Normal Mode	
TS 2.0	
4.1.1.8: Jitter Tolerance in Packed Pixel Mode	

Amplifiers

Bias Tee

TF-MHL-TPA-R-WOSI Differential and Common-Mode Signals Calibration Setup for Sink Min-Max Test

TF-MHL-TPA-TT

Bias Voltage

DC Power Supply

MHL N MHL TF-MHL-TPA-P-WOSI

0255-01

Dongle Tests

5.1.1.1: Input Signal Single-Ended Voltage Level Tolerance	
--	--

5.1.1.3: Intra-Pair Skew Tolerance Test

CTS 1.X

5.1.1.4: Jitter Tolerance

CTS 2.0

5.1.1.4: Jitter Tolerance in Normal Mode

CTS 2.0

5.1.1.9: Jitter Tolerance in Packed Pixel Mode

5.1.1.2: Input Signal Minimum and Maximum Swing Voltage Tolerance

See Also

- Equipment Connection Setup MHL Transmitter (see page 14)
- About Algorithms (see page 153)
- View Connected Instruments (see page 37)

Application Directories and Usage

The application directory and associated files are organized as follows:

🗀 ACP	
🚞 Bin	
🚞 Compliance Suites	
🚞 Data Manager	
🚞 Data Storage	
Documents	
🚞 Examples	
🛅 ICP	
🚞 Lib	
🚞 Report Generator	
🛅 SCP	
🛅 Tools	

The following table lists the default directory names and their usage.

Table 6: Application directories and usage

Directory names	Usage
InstallDir\TekExpress\TekExpress MHL	Contains the application and associated files
TekExpress MHL\ACP	Contains instrument and MHL application-specific interface libraries
TekExpress MHL\Bin	Contains miscellaneous MHL application libraries
TekExpress MHL\Compliance Suites	Contains compliance-specific files and filter files
TekExpress MHL\Data Manager	Contains result management-specific libraries of the MHL application
TekExpress MHL\Data Storage	Contains libraries needed for storing data
TekExpress MHL\Documents	Contains the technical documentation for the MHL application
TekExpress MHL\Examples	Contains various support files
TekExpress MHL\ICP	Contains instrument and MHL application-specific interface libraries
TekExpress MHL\Lib	Contains utility files specific to the MHL application
TekExpress MHL\Report Generator	Contains Excel Active X interface Library for Report Generation
TekExpress MHL\SCP	Contains instrument and MHL application-specific interface libraries
TekExpress MHL\Tools	Contains instrument and MHL application-specific files

See Also

View Test-Related Files (see page 28)

View Test-Related Files

Files related to MHL tests are stored in the MHL folder under the My TekExpress shared folder. In the MHL folder, each test setup has a test setup file and a test setup folder, both with the test setup name. The test setup file is preceded by the MHL icon and usually has no file extension displayed.

Inside the test setup folder is another folder named for the DUT ID used in the test sessions (the default is DUT001).

Inside the DUT001 folder are the session folders and files. Each session has a folder and file pair, both named for the test session using the naming convention (date)_(time). Each session file is stored outside of its matching session folder.

Each session folder contains image files of any plots generated by the test session, and any waveform files if prerecorded waveform files were used during the session.

The first time you run a new, unsaved session, the session files are stored in the Untitled Session folder located at ... \My TekExpress\MHL. Once you name and save the session, the Untitled Session folder name is changed to the one you specified.

NOTE. By default, test report files are saved in the session folder. You can <u>change the report file location</u> (see page 97) for a specific test.

See Also

File Name Extensions (see page 29)
File Name Extensions

The TekExpress MHL software uses the following file name extensions:

File name extension	Description	
.TekX	Session files are saved in this format but the extensions may not be displayed	
.seq	The test sequence file	
.xls	Microsoft Excel spreadsheet file	
.xml	The encrypted XML file that contains the test-specific configuration information	
	The log file extension is also xml	
.wfm	The test waveform file	
.mht	Test result reports are saved in this format by default. Test reports can also be saved in MHTML format (see page 97).	
.flt	Filter file used with transmitter tests	

See Also

Application Directories and Usage (see page 27)

Compatibility

The TekExpress MHL application runs on the following Tektronix oscilloscopes:

- DPO/DSA/MSO72004/B/C, DPO/DSA/MSO71604/B/C, DPO/DSA/MSO71254/B/C, and DPO/DSA/MSO70804/B/C Digital Oscilloscopes with Option DJA
- DPO/DSA73304D and DPO/DSA72504D Digital Oscilloscopes with Option DJA

See Also

Minimum System Requirements (see page 31)

Minimum System Requirements

The following table shows the minimum system requirements for an oscilloscope to run TekExpress.

	BW \ge 8 GHz, 16M Record Length/Ch - Opt. 4M/2XL or more (for Eye Diagram and Jitter tests), and 20XL for MHL Protocol analysis software	
Oscilloscope	For a list of compatible oscilloscopes, see Compatibility (see page 31).	
Processor	Same as the oscilloscope	
Operating System	Same as the oscilloscope	
Memory	Same as the oscilloscope	
Hard Disk	Same as the oscilloscope	
Display	Same as the oscilloscope ¹	
Software	TekExpress MHL Advanced Analysis and Compliance software	
	DPOJET, Jitter and Eye Diagram Analysis Tool, 3.5.1.4 or later	
	National Instruments TestStand engine 4.2.1	
	Microsoft Excel 2002 or above	
	Microsoft Internet Explorer 6.0 SP1 or later	
	Microsoft Photo Editor 3.0 or equivalent software for viewing image files	
	 Adobe Reader 8.0 or equivalent software for viewing portable document format (PDF) files 	
Probes	Two Differential Probes – P7313SMA for Single-Ended and Differential tests	
	One Differential Probe – P7240 for Common-Mode tests	

Table 7: System requirements

MHL Sources	MHL Tx DUTs
	 One AWG7122 B/ C with Option 01, 02/06 and 08 which can be used as an MHL DUT
	MHL Ref waveforms
TDR Tests	 Oscilloscope – DSA8200 or equivalent with 80E03 and 80E04 modules and I-Connect software
MHL Generator for Sink and Dongle tests	AWG7122B/C with option 01 and 02 or 06 and 08
Test Fixtures	MHL fixture kits from Tektronix
	TF-MHL-TPA-TEK (Complete MHL Fixture kit)
	TF-MHL-TPA-TEK-SO (Source Fixture Only kit)
	TF-MHL-TPA-TEK-SI (Sink Fixture kit)
	TF-MHL-TPA-TEK-DG (Dongle Fixture kit)
	TF-MHL-TPA-TEK-CB (Cable Fixture kit)
	■ TF-MHL-TPA-TEK-RSEN (RSEN kit)
MHL Accessory Kit (to be used with	Two Bias Tees from Mini-Circuits – ZX85-12G-S+
AWG)	 Two Amplifiers from Pico Second Pulse Labs – 5866 (needed only for Sink/Dongle Min/Max test)
	Two 120PS TTC filters from Pico Second Pulse Labs – 5915-100-120PS
Other Devices	 Microsoft compatible mouse or compatible pointing device
	 Four USB ports (two USB ports minimum)
	 PCI-GPIB or equivalent interface for instrument connectivity²
	2 pair of SMA cables

Table 7: System requirements (cont.)

- 1 If TekExpress is running on an instrument having a video resolution lower than 800 x 600 (for example, sampling oscilloscope), it is recommended that you connect a secondary monitor, which must be enabled before launching the application.
- If TekExpress is installed on a Tektronix oscilloscope, the virtual GPIB port will be used by TekExpress for communicating with oscilloscope applications. If external GPIB communication devices such as USB-GPIB-HS or equivalent are used for instrument connectivity, ensure that the Talker Listener utility is enabled in the DPO/DSA oscilloscope's GPIB menu. For ease of use, connect to an external (secondary) monitor.

See Also

Compatibility (see page 31)

Install the Software

The software can be installed on any compatible instrument running Windows XP or Windows 7.

- 1. Close all applications (including the TekScope application).
- 2. Go to the www.tek.com Web site and search for MHL to locate the installation file. Download the file MHL WebInstaller.exe.
- **3.** Double-click the executable file to extract the installation files. After extraction, the installer launches and displays the InstallShield Wizard.
 - Check TekExpress application for MHL to install the TekExpress MHL application.
- 4. The software automatically installs in the following location:
 - Windows XP location: C:\Program Files\Tektronix\TekExpress\TekExpress MHL
 - Windows 7 location: C:\Program Files (x86)\Tektronix\TekExpress\TekExpress MHL
- 5. The installer updates the TekScope Analyze menu to include TekExpress MHL:

See Also

- Minimum System Requirements (see page 31)
- Compatibility (see page 31)

Activate the License

Activate the license using the option installation wizard on the oscilloscope. Follow these steps to activate the TekExpress MHL license:

1. From the oscilloscope menu bar, click Utilities > Option Installation.

The TekScope Option Installation wizard opens.

TekScope Option Insta	llation
	Use this menu item to enable optional features and applications that are available for your instrument. Fixed Licenses: Use a Fixed License Option Installation Key to permanently install optional features and applications. Floating Licenses: Use a Floating License Option Installation File to temporarily install optional features or applications. A feature or application may be enabled using an appropriate License File or disabled by returning a License File to the Online Floating License Management System on www.tektronix.com/floatinglicense. For information about purchasing an optional feature or application and obtaining a Fixed License Option Installation Key or Floating License Option Installation File, refer to the Technical Support information that is available in the Help menu.
Tektronix	Continue

2. Instructions for using the Options Installation window to activate licenses for installed applications is provided in the oscilloscope online help. Press the F1 key on the oscilloscope keyboard to open the Option Installation help topic. Follow the directions in the topic to activate the license.

See Also

View Version and License Information (see page 35)

View Version and License Information

Use the following instructions to view application version information and version information for the application modules such as the Programmatic Interface and the Programmatic Interface Client.

To view version information:

- 1. From the Options menu, select About TekExpress.
- 2. Click the View Version Details link to check the version numbers of the installed test suites. Close the dialog box when finished.

To view license information:

1. From the oscilloscope Help menu, select About TekScope.

The Options section in the dialog box displays a list of installed options, including TekExpress MHL.

2. To view the Option key, look in the Option Installation Key section. When finished, click **OK** to close the dialog box.

See Also

- Activate the License (see page 34)
- Options Menu (see page 36)

Start the Application

The first time you open the application after installation, you are required to enter a license key. The application also checks for a file called Resources.xml located in the My TekExpress folder. If this file is not found, instrument discovery is performed before launching TekExpress MHL. The Resources.xml file contains information regarding instruments available on your network.

NOTE. When the application starts, it checks for the appropriate license key. If the valid license key is not present, the application switches to the Evaluation mode. If the application fails to detect the key, it continues to run in Evaluation mode. You are allowed 10 free trials in Evaluation mode. Each time you open the application without supplying a valid license key, one of the free trials is used.

To run the MHL application, from the TekScope menu, select Analyze > TekExpress MHL.

While running the application, you can switch between the oscilloscope screen and MHL by clicking the desired window. To keep the application window on top, select **Keep On Top** from the **Options menu**.

NOTE. If the application was not terminated properly during the last use, a dialog box asks to recall the previously unsaved session.

Options Menu

Options menu

The Options menu (see page 37) is located in the upper right corner of the application.

It has the following selections:

Menu	Function	
Default Test Setup	Opens an untitled test setup with defaults selected	
Open Test Setup	Opens a saved test setup	
Save Test Setup	Saves the current test setup selections	
Save Test Setup As	Creates a new test setup based on an existing one	
Open Recent	Displays a menu of recently opened test setups to select from	

Menu	Function
Instrument Control Settings (see page 42)	Shows the list of instruments connected to the test setup and allows you to locate and refresh connections to connected instruments
Keep On Top	Keeps the TekExpress MHL application on top of other open windows on the desktop
Email settings (see page 41)	Use to configure email options for test run and results notifications
Help	Displays TekExpress Help
About TekExpress	 Displays application details such as software name, version number, and copyright
	 Provides access to <u>license information (see page 35)</u> for your MHL installation
	Provides a link to the Tektronix Web site

Options Menu	
Options	
Default Test Setup	
Open Test Setup	
Save Test Setup	
Save Test Setup As	
Open Recent	Þ
Instrument Control Settings	
- Keep On Top	
Email Settings	
Help	
About TekExpress	

View Connected Instruments: the Instrument Control Settings

Use the Instrument Control Settings dialog box to view or search for connected instruments required for the tests. The application uses TekVISA to discover the connected instruments.

To refresh the list of connected instruments:

1. From the Options menu, select Instrument Control Settings.

ZI	.AN 🔽 GP	IB 🔲 Serial	🔲 Non - VISA Res	ources	
1	FekLink 🔲 US	B 🔽 VXI		Ref	resh TekVISA 300 s Timeout
Ret	trieved Instrume	ents (6)	0	0 at an	December 144
	Connection	Resource	Serial No	Options	Resource Addr
•	VISA-GPIB	DP071604B	8110866	10XL	
1	VISA-LAN	AWG7122C	B030149	10XL	
1	VISA-LAN	DP071604C	Q04	10XL	
1	VISA-LAN	MSO72004	C010316	10XL	
1	VISA-LAN	MSO71254	B010235	10XL	
1	VISA-LAN	DSA71604	B031020	10XL	

2. In the Search Criteria section of the Instrument Control Settings dialog box, select the connection types of the instruments to search for.

Instrument search is based on the VISA layer but different connected cables determine the resource type, such as LAN, GPIB, USB. For example, if you choose LAN, you can search for all the instruments supported by TekExpress that are communicating over the LAN. If the search does not find any instruments that match a selected resource type, a message appears telling you that no such instruments were found. Click **OK** to close the message window.

- 3. Click Refresh. TekExpress searches for connected instruments.
- 4. After discovery, the dialog box lists the instrument-related details based on the search criteria you selected. For example, if you selected LAN and GPIB as the search criteria, the application checks for the availability of instruments over LAN, then GPIB.

The details of the instruments are displayed in the Retrieved Instruments table. The time and date of instrument refresh is displayed in the Last Updated field.

See Also

- Equipment Connection Setup (MHL Transmitter) (see page 14)
- Equipment Connection Setup (MHL Receiver) (see page 18)

Application Controls

Table 8: Application controls descriptions

Item	Description
Options menu (see page 36)	Opens the Options menu for access to global controls
Panels	Visual frames with sets of related options. Some panels are further divided into tabs and other sections.
Start button	Start
	Use the Start button to continuously acquire and accumulate measurements. If prior acquired measurements have not been cleared, the new measurements are added to the existing set.
Stop button	Stop
	Use the Stop button to abort a test in progress.
Pause \ Continue button	Pause Continue
	Use the Pause button to interrupt the current acquisition. When a test is paused, the button name changes to Continue.

Table 8: Application controls descriptions (cont.)

Item	Description
Clear button	Clear
	Available only on the <u>Results panel (see page 95)</u> .
	Use the Clear button to clear all existing measurement results. Note that adding or deleting a measurement, or changing a configuration parameter of an existing measurement also clears measurements. This is to prevent the accumulation of measurement statistics or sets of statistics that are not coherent.
Application window move icon	Tek
	Place the cursor over the three-dot pattern in the upper left corner of the application window. When the cursor changes to a hand, drag the window to the desired location.

Email Settings

Use the Email Settings utility to <u>configure email notifications (see page 87)</u> if you want the application to notify you when a tests completes or produces an error. Select the type of test run information to be included in the notification, such as test reports and test logs, the email message format, and the email message size limit.

Note: Separate Email addresses with a comma Sender's Address Semial Attachments Reports SMTP Server ScoreCard Login Analysis Screenshot Password Status Log Last 20 Lines Full Log Host Name Full Log mail Configuration Full Log nail Size (MB) 5 Timeout -1 Email Test Results When complete or on error Test Email	Recipient e-mail Address(es)		
Sender's Address Server Configuration Image: Server Configuration SMTP Server ScoreCard Login Analysis Screenshot Password Status Log Last 20 Lines Full Log Hoat Name mail Configuration nal Format HTML Plain Text Number of Attempts to Send 1 Timeout Test Email Apply Close 	Note: Separate Email	addresses with a comma	
Email Attachments Server Configuration Reports SMTP Server SMTP Port ScoreCard Login Analysis Screenshot Password Status Log Last 20 Lines Full Log Hoat Name Full Login	Sender's Address		
Reports SMTP Server SMTP Pot -1 ScoreCard Login - - Analysis Screenshot Password - - Status Log Last 20 Lines Full Log Hoet Name - Strail Configuration mail Format - HTML Plain Text ax Email Size (MB) 5 Timeout -1 Email Test Results When complete or on error Test Email Apply Close	Email Attachments	Server Configuration	
ScoreCard Login Analysis Screenshot Password Status Log Last 20 Lines Full Log Host Name Host Name Status Log HTML Plain Text Iax Email Size (MB) 5 Timeout -1 Email Test Results When complete or on error Test Email Apply Close	V Reports	SMTP Server	SMTP Port -1
Image: Analysis Screenshot Password Image: Analysis Screenshot Password Image: Status Log Image: Last 20 Lines Full Log Host Name Host Name Email Configuration Image: Last 20 Lines Full Log Image: Format Image: HTML Plain Text Number of Attempts to Send 1 Max Email Size (MB) 5 Timeout -1 Image: Email Test Results When complete or on error Test Email Apply Close	ScoreCard	Login	
Status Log Last 20 Lines Full Log Host Name Email Configuration Email Format HTML Plain Text Number of Attempts to Send 1 Max Email Size (MB) 5 Timeout -1 1 Email Test Results When complete or on error Test Email Apply Close	Analysis Screenshot	Password	
Email Configuration Email Format HTML Plain Text Number of Attempts to Send 1 Max Email Size (MB) 5 Timeout -1 Email Test Results When complete or on error Test Email Apply Close	Status Log 💽 Last 20 Lines 🛛 Full Log	Host Name	
Granal Format Image: HTML Plain Text Number of Attempts to Send 1 Max Email Size (MB) 5 Timeout -1 Temelit Test Results When complete or on error Test Email Apply	mail Configuration		
Max Email Size (MB) 5 Timeout -1 Test Email Apply Close	mail Format 💿 HTML 🔷 Plain Text	Number of Attempts to Send 1	
Email Test Results When complete or on error	lax Email Size (MB) 5	Timeout -1	
Email Test Results When complete or on error		Test Email	Apply Close
	Email Test Results When complete or on error		

Instrument Control Settings

The Instrument Control Settings dialog box shows the list of resources found on different connections. It serves two purposes:

- Discovers the connected instruments
- Confirms the instrument connection setup

	🖌 gpib	Serial	Non - VISA Res	sources	
TekLink	USB	VXI		Ref	resh TekVISA 300 s Timeout
Connection	Re	source	Serial No	Options	Resource Addr
VISA-GPIB	DP	O71604B	B110866	10XL	

Use the Instrument Control Settings feature to <u>search for and view connected instruments (see page 37)</u> and view instrument connection details. Connected instruments displayed here can be selected for use in the Global Settings section of the Setup panel's Configuration section.

See Also

Options Menu (see page 36)

Exit the Application

Use the following method to exit the application:

NOTE. Using other methods to exit the application results in abnormal termination of the application.

- 1. Click On the application title bar.
- **2.** Do one of the following:
 - A message box appears asking if you really want to exit TekExpress. To exit, click **Yes.** Otherwise, click **No.**
 - If you have an unsaved session or test setup open, you will be asked if you want to save it before exiting. To save it, click Yes. If you do not wish to save, click No. To remain in the session, click Cancel.

Application Basics

The TekExpress MHL software user interface is intuitive and easy to use. In addition to the UI, a programmatic interface (see page 105) is available.

The user interface has four main panels whose options differ depending upon whether the MHL Transmitter or MHL Receiver Suite has been selected.

- First, set up the tests. (see page 47)
- Then, prepare to run the tests (see page 85).
- Then, run the tests and view the progress of analysis (see page 89).
- Then, view the results of the tests (see page 95).
- You may <u>configure and view reports (see page 97)</u>.
- You may easily <u>save and recall test setups (see page 101)</u>.

See Also

Overview and Key Specifications (see page 3)

Setting Up Tests: the Setup Panel

The <u>Setup panel (see page 52)</u> guides you through the MHL test setup process using tabs. The options selected in a tab affect the options available in the next tab down. The available options differ depending on whether you choose Version CTS 1.X or 2.0.

NOTE. A check mark next to a tab title means you have made changes. However, if you make changes on a tab that significantly affect a prior tab, the check mark of the affected tab is replaced with its number, indicating that you should check the settings on that tab.

DUT tab (see page 52)

Here, you can specify the DUT ID, device, applications suite (MHL Transmitter or Receiver), the CTS version, the view and device profile settings. These settings apply to all tests for the current session, and affect the test list in the **Test Selection** tab.

Test Selection tab (see page 62)

Here, select tests individually or by group, view a short description of a selected test, and view a schematic showing appropriate device connections.

Acquisitions tab (see page 67) (MHL Transmitter only)

View configurations for attached probes, view a list of signals and sources, and view the Acquisitions table.

Configuration tab (see page 74) (Displays only when View: Advanced is selected in the DUT tab.)

Here, select either **Compliance Mode** or **User Defined Mode**, view Global Settings, select measurement settings, and view or edit test parameter limits.

Preferences tab (see page 48)

Here, you may specify that an email be sent to you upon test completion.

See also

- Saving a Test Setup (see page 101)
- Running the Tests and Viewing their Progress the Status Panel (see page 89)
- Viewing Test Results the Results Panel (see page 95)
- Configuring and Viewing Reports the Reports Panel (see page 97)

Preferences tab			
TekExpress MHL - (Unt	tled)*	Options	8
Setup Status Results Reports UUT UUT Test Selection Acquisitions Configuration	Analysis Options On Test Completion, Send me an E-mail	Email Settings	Start C
5 Preferences			
Tektronix Status Ready			

akEvaraas MHL (Lintitia	¶/≉	antine 🗖	×
		Options	
Setup DUT	Compliance Mode User Defined Mode	Limits Editor	Start
Status Test Selection	Global Settings Measurements		Davia
Results Acquisitions	Real Time Scope DPO73304D (TCPIP::134.62.86.15		
4 Configuration			
Preferences			
	✓ DSP Filter (8 GHz)		
tronix Status Ready			
ktronix Status Ready			

Configuration — Meas	surements (Transmitter)
TekExpress MHL - (Untitle	d)* Options
Setup Status Results Reports DUT Test Selection Acquisitions 4 Configuration 5 Preferences	Compliance Mode User Defined Mode Imits Editor Global Settings Measurements HL Clock -3.1.1.3 Standby Output Voltage-VOFF -3.1.1.7 Common-mode Rise and Fall Times-TR_CM, TF_CM -3.1.1.0 MHL Clock Duty Cycle 24-Bit or Packed Pixel Mode -3.1.1.1 Single-ended High Level Voltage-VSE_HIGH -3.1.1.3 Single-ended High Level Voltage-VSE_LOW
	-3.1.1 4 Differential Output Swing Voltage-VDF_SWING -3.1.1 5 Common-mode Output Swing Voltage-VC MSWING Scope Settings Vertical Setup Record Length (M) 12.5 Edge Trigger Level (%) 50 Clock Settings Measurement Repetition (Count)
Tektronix Status Stopped.	

imits Editor						
iew or Edit the v	values used for H	ligh Limit and Lo	w Limt for each r	neasurement		
blank cell means	no limit value is appl	ied				
Test Name	Details	Compare String	Low Limit	Compare String	High Limit	
	MHL Positive Clock	>= Greater Than O	35	<= Less Than Or E	65	
3.1.1.10 MHL Cloc	MHL Negative Clock	>= Greater Than O	35	<= Less Than Or E	65	
	MHL Positive Clock	>= Greater Than O	35	<= Less Than Or E	65	
	MHL Negative Clock	>= Greater Than O	35	<= Less Than Or E	65	
a constant de la	Clock Jitter at VTer	<= Less Than Or E	200			
5.1.1.11 PINE CIUC	Clock Jitter at VTer	<= Less Than Or E	200			
	Data Jitter at VTer	<= Less Than Or E	88.8			
3.1.1.12 MHL Dat	Mask hits at VTerm(<= Less Than Or E	0			
	Data Jitter at VTer	<= Less Than Or E	88.8			

dvanced View		
TekExpress MHL - (Untitle	ed)*	Options 💌 🙁
Setup 1 DUT Status 7 Test Selection Results 7 Acquisitions Reports 7 Configuration	DUT ID DUT001 Device MHL Physical Layer Solution Suite MHL Transmitter • Acquire live waveforms Use pre-recorded waveform files View Advanced	Y Pause
Preferences	Pixel Mode 24 Bits Internal Source Internal 24 Bits: VTerm Min (V) Low Resolution (MHz) 25 High Resolution (MHz) 74.25 Num Of Other Resolutions 0 MHL+ Compensation Factor 1.2 MHL- Compensation Factor 1.2 Min Signal Threshold (mV) 250	
ktronix Status Ready		

	Start
1 DUT	DUT ID DUT001
2 Test Selection	Device MHL Physical Layer Solution
	Suite MHL Transmitter Version CTS 2.0 V Pause
3 Acquisitions	Acquire live waveforms OUse pre-recorded waveform files
s 4 Configuration	View Advanced
5 Preferences	Device Profile
T	Pixel Mode Both Termination Source Internal
	24 Bits: VTerm Min (V) 3.135
	High Data Rate (Gbps) 2.22
	Packed Pixel : High Data Pate (Chos) 297 MHI + Compensation Factor 12
	MHL- Compensation Factor 1.2
	Min Signal Threshold (mV) 250

Selecting Device Parameters: the DUT tab

1. Click the <u>DUT (see page 62)</u> tab on the Setup panel. Here, specify the DUT ID, device, suite (MHL Transmitter or Receiver), CTS version, view, acquisition method and Device Profile settings.

These settings apply to all current tests, and affect the test list in the Test Selection tab.

- 2. Enter the device ID. (The default value is DUT001.) This ID appears on test reports. To add comments to the top of a report, click and enter up to 256 characters.
- 3. For the Suite option, choose MHL Transmitter or MHL Receiver.
- 4. Select either Version CTS 1.X or CTS 2.0. This choice determines which Device Profile options appear on the screen, and which tests appear on the Test Selection tab.

- **5.** *MHL Transmitter only:* Select either "Acquire Live Waveforms" or "Use pre-recorded waveform files" for testing.
- 6. *MHL Transmitter only:* For the View option, select either Compliance or Advanced.
 - If you choose the Advanced view, an additional Configuration tab appears.
 - To access configuration options for **Compliance** view, click the **Configure** button on the Test Selection tab.
- 7. Set the **Device Profile** options (again, these will differ depending upon the CTS version selected above).
 - MHL Transmitter only: If you select Version CTS 1.X, you will see this DUT screen. (see page 57) These Device Profile options will be available.

Setting	Option	Description
Pixel Mode	24 Bits	This is the only option available.
Low Resolution (MHz)	25	Enter a value from 25 to 100.
High Resolution (MHz)	74.25	Low Resolution value should be less than or equal to High Resolution, and High Resolutions should be greater than or equal to Low resolution.
Num of Other Resolutions	0	If the DUT can support more than the three standard resolutions, enter the number here. Value can be from 0 to 10. Applicable tests will be run for the number of other resolutions specified here.
MHL+ Compensation Factor	1.2	Used for fixture compensation. Value should be between 1 and 2.
MHL– Compensation Factor	1.2	Used for fixture compensation. Value should be between 1 and 2.
Min Signal Threshold	250	Used for signal validation. Value should be between 50 and 600 mV.
Termination Source	Internal	Select this if the termination voltage control mode is INT (Internal).
	External Other	Select this if the termination voltage control mode is EXT (External) and you are using an external power supply other than Tek Power Supply to control probe termination.
	Tek Power Supply	Select this if the termination voltage control mode is EXT (External) and you are using a Tektronix Power Supply as the power source.
		NOTE. Automated control of the Tek Power Supply is not available in this release.

Table 9: Device Profile options for CTS 1.X (Transmitter)

Setting	Option	Description
VTerm Min (V)	3.135	Value must be greater than or equal to (≥) 1V and less than or equal to (≤) VTerm Max.
VTerm Max (V)	3.465	Value must be greater than or equal to (\geq) VTerm Min, and less than or equal to (\leq) 5V.

MHL Transmitter only: If you select Version CTS 2.0, the DUT screen and Device Profile options you will see will differ depending upon the Pixel Mode selected. This screen shows the <u>DUT tab</u> with Pixel Mode of Both (see page 59). These Device Profile options will be available.

Setting	Option	Description
Pixel Mode	24 Bits	Select this if the DUT uses 24 Bit mode.
	Packed Pixel	Select this if the DUT uses packed pixel mode.
	Both	Select this if the DUT uses both 24 Bit and packed pixel mode.
When Pixel Mode is 24 Bits:		
Low Data Rate (Gbps)	0.75	Enter a value from 0.75 – 2.22 Gbps.
High Data Rate (Gbps)	2.22	Low Data Rate value should be less than or equal to High Data Rate and High Data Rate values should be greater than or equal to Low Data Rate.
Num of Other Data Rates	0	If the DUT can support more than the three standard resolutions, enter the number here. Value can be from 0 to 10. Applicable tests will be run for the number of other resolutions specified here.
When Pixel Mode is Packed Pixel:		
Low Data Rate (Gbps)	2.25	Enter a value from 2.25 – 2.97 Gbps.
High Data Rate (Gbps)	2.97	Low Data Rate value should be less than or equal to High Data Rate and High Data Rate values should be greater than or equal to Low Data Rate.
Num of Other Data Rates	0	If the DUT can support more than the three standard resolutions; enter the number here. Value can be from 0 to 10. Applicable tests will be run for the number of other resolutions specified here.
When Pixel Mode is Both:		
24 Bits:		
Low Data Rate (Gbps)	0.75	Enter a value from 0.75 – 2.22 Gbps.
High Data Rate (Gbps)	2.22	Low Data Rate value should be less than or equal to High Data Rate and High Data Rate values should be greater than or equal to Low Data Rate.
Packed Pixel:		
High Data Rate (Gbps)	2.97	Low Data Rate value should be less than or equal to High Data Rate and High Data Rate values should be greater than or equal to Low Data Rate.

Table 10: Device Profile options for CTS 2.0 (Transmitter)

Setting	Option	Description	
MHL+ Compensation Factor	1.2	Used for fixture compensation. Value should be between 1 and 2.	
MHL– Compensation Factor	1.2	Used for fixture compensation. Value should be between 1 and 2.	
Min Signal Threshold	250	Used for signal validation. Value should be between 50 and 600 mV.	
Termination Source	Internal	Select this if the termination voltage control mode is INT (Internal).	
	External Other	Select this if the termination voltage control mode is EXT (External) and you are using an external power supply other than Tek Power Supply to control probe termination.	
	Tek Power Supply	Select this if the termination voltage control mode is EXT (External) and you are using a Tektronix Power Supply as the power source.	
		NOTE. Automated control of the Tek Power Supply is not available in this release.	
VTerm Min (V)	3.135	Value must be greater than or equal to (\geq) 1V and less than or equal to (\leq) VTerm Max.	
VTerm Max (V)	3.465	Value must be greater than or equal to (\geq) VTerm Min, and less than or equal to (\leq) 5V.	

- *MHL Receiver only:* If you select Version **CTS 1.X**, you will see this DUT tab screen. (see page 60) These Device Profile options will be available.

Table 11: Device Profile options for CTS 1.X (Recei

Setting	Option	Description
Pixel Mode	24 Bits	This is the only option available.
Refresh Rate	50 Hz	
	60 Hz	
	Both	
Low Resolution (MHz) when	27	Enter a value of 25 MHz, 27 MHz, or 74.25 MHz.
Refresh Rate is 50 Hz		Low Resolution value should be less than or equal
Low Resolution (MHz) when Refresh Rate is 60 Hz	25	to High Resolution, and High Resolutions should be greater than or equal to Low resolution.
Low Resolution (MHz) when Refresh Rate is Both	27	_
High Resolution (MHz)	74.25	_

MHL Receiver only: If you select Version CTS 2.0, the DUT screen and Device Profile options you will see will differ depending upon the Pixel Mode selected. This screen shows the DUT tab with Pixel Mode of Both (see page 61). These Device Profile options will be available.

Setting	Option	Description
Pixel Mode	24 Bits	Select this if the DUT uses 24 Bit mode.
	Packed Pixel	Select this if the DUT uses packed pixel mode.
	Both	Select this if the DUT uses both 24 Bit and packed pixel mode.
Low Data Rate (Gbps) when Pixel Mode is 24 Bits, 50 Hz Refresh Rate:	0.81	Enter a value of 0.81 or 2.22.
Low Data Rate (Gbps) when Pixel Mode is 24 Bits, 60 Hz Refresh Rate:	0.75	Enter a value of 0.75, 0.81, or 2.22.
Low Data Rate (Gbps) when Pixel Mode is 24 Bits, Refresh Rate is Both:	0.81	Enter a value of 0.81 or 2.22.
Low Data Rate (Gbps) when Pixel Mode is Packed Pixel, 50 Hz Refresh Rate:	2.97	2.97
Low Data Rate (Gbps) when Pixel Mode is Packed Pixel, 60 Hz Refresh Rate:	2.97	2.97
Low Data Rate (Gbps) when Pixel Mode is Packed Pixel, Refresh Rate is Both:	2.97	2.97
Low Data Rate (Gbps) when Pixel Mode is Both, 50 Hz Refresh Rate:	0.81	Enter a value of 0.81 or 2.22.
Low Data Rate (Gbps) when Pixel Mode is Both, 60 Hz Refresh Rate:	0.75	Enter a value of 0.75, 0.81, or 2.22.
Low Data Rate (Gbps) when Pixel Mode is Both, Refresh Rate is Both:	0.81	Enter a value of 0.81 or 2.22.
High Data Rate (Gbps) when Pixel Mode is Both, Refresh Rate is Both:	2.22	Low Data Rate value should be less than or equal to High Data Rate and High Data Rate values should be greater than or equal to Low Data Rate.
High Data Rate (Gbps, Packed Pixel) when Pixel Mode is Both, Refresh Rate is Both:	2.97	2.97

Table 12: Device Profile options for CTS 2.0 (Receiver)

See Also

- Setting Up Tests the Setup Panel (see page 47)
- Choosing Tests the Test Selection tab (see page 62)
- Acquiring Waveforms the Acquisitions tab MHL Transmitter only (see page 67)

Configuring Tests the Configure button or Configuration tab (see page 74)

Express MHL - (Untitle	1)	Options 💌	
1 DUT 2 Test Selection 3 Acquisitions 4 Preferences	DUT ID DUT001 Device MHL Physical Layer Solution Suite MHL Transmitter • Acquire live waveforms • Use pre- View Compliance ▼ Device Profile Pixel Mode 24 Bits ▼ 24 Bits: ▼ V Low Resolution (MHz) 74.25 ∨ Num Of Other Resolutions 0 ▼	Image: Second condition Image: Second condition recorded waveform files ermination Internal Image: Second condition Term Min (V) 3.135 Term Max (V) 3.465	Start Pause
tus Ready	MHL+ Compensation Factor 1.2 MHL- Compensation Factor 1.2 Min Signal Threshold (mV) 250		

DUT tab – CTS 2.0 (Transmitte	r)	
₩ TekExpress MHL - (Untitled)*		Options
Setup 1 DUT DUT ID DUT Status 2 Test Selection Device MH 3 Acquisitions • Acquire line 4 Preferences View Component 9 Preferences Device Preprively Device Preprively 9 Pixel Mode 24 Bits : Low Data Ra	001 Image: Solution Image: Solution Image: Solution Physical Layer Solution Image: Solution Image: Solution Image: Solution Transmitter Image: Solution Image: Solution Image: Solution Image: Solution tilance Image: Solution Image: Solution Image: Solution Image: Solution both Image: Solution Image: Solution Image: Solution Image: Solution te (Gbps) Image: Solution Image: Solution Image: Solution Image: Solution te (Gbps) Image: Solution Image: Solution Image: Solution Image: Solution te (Gbps) Image: Solution Image: Solution Image: Solution Image: Solution te (Gbps) Image: Solution Image: Solution Image: Solution Image: Solution te (Gbps) Image: Solution Image: Solution Image: Solution Image: Solution Image: Solution	Start C Pause
Packed Pixe High Data Ra	L: te (Gbps) 2.97 MHL+ Compensation Factor 1. MHL- Compensation Factor 1. Min Signal Threshold (mV) 29	2 2 50

tab with Pixel N	lode of Both
TekExpress MHL - (Untit	:led)* Options 🔽
	DUT ID DUT001
2 Test Selection	Device MHL Physical Layer Solution
	Suite MHL Transmitter Version CTS 2.0 V
sults 3 Acquisitions	Acquire live waveforms O Use pre-recorded waveform files
eports 4 Configuration	View Advanced
5 Preferences	Device Profile
•	Pixel Mode Both
	24 Bits : VTerm Min (V) 3.135 Low Data Rate (Gbps) 0.75 VTerm Max (V) 3.465 High Data Rate (Gbps) 2.22
	Packed Pixel : High Data Rate (Gbps) 2.97 MHL+ Compensation Factor 1.2 MHL- Compensation Factor 1.2
	Min Signal Threshold (mV) 250
onix Status Ready	

Choosing Tests: the Test Selection tab

Use these instructions to select the tests to run on the connected DUT. *MHL Transmitter only:* Tests that you select here impact the parameters available in the Acquisitions tab.

1. In the Setup panel, click the Test Selection tab.

Different sets of tests are displayed depending upon which MHL solution and which CTS version you have selected in the DUT tab.

If you selected MHL Transmitter and Version CTS 1.X, you will see this screen (see page 66). If you selected MHL Transmitter and Version CTX 2.0, you will see this screen (see page 64).

If you selected MHL Receiver and Version CTS 2.0, you will see this screen (see page 65). If you selected MHL Receiver and Version CTX 1.X, you will see this screen (see page 67).

- 2. All tests are selected by default. Click **Deselect All** unless you want to run all tests.
- **3.** Select the desired tests. For descriptions of the supported MHL Transmitter tests, <u>click here. (see page 5)</u> For descriptions of the supported MHL Receiver tests, <u>click here. (see page 8)</u>
 - Click the check boxes of individual tests or of entire groups of tests. To select all tests in the list, click the **Select All** button.
 - Click on the Schematic button to display the <u>schematic document for the selected test (see page 63)</u>. Use to verify the test setup before running the test.

Once you have selected the tests, then you can configure the tests (see page 74).

See Also

- Setting Up Tests the Setup Panel (see page 47)
- Acquiring Waveforms (see page 67)
- Configuring Tests the Configure button or Configuration tab (see page 74)
- Running the Tests and Viewing their Progress the Status Panel (see page 89)

Acquiring Waveforms: the Acquisitions tab (MHL Transmitter only)

The <u>Acquisitions (see page 70)</u> in the Setup panel is used to view and set acquisitions parameters for the selected tests. Before you can do this, you must first:

- Choose either Acquire Live Waveforms or Use Pre-recorded waveform files in the Setup Panel on the DUT tab.
- The acquisition parameters displayed on the Acquisitions tab will differ depending on your choice on the DUT tab.

If you have chosen Acquire Live Waveforms on the DUT tab:

- 1. In the Setup panel, click the <u>Acquisitions (see page 70)</u> tab.
- 2. Select the probe source channel for each listed MHL signal in the Signal selection table.

3. You may click the <u>View Probes (see page 70)</u> button to view probe configuration for each channel used.

4. You'll see the Acquisitions table. For information about the possible parameter columns displayed in the Acquisitions table, click here.

The table below lists the possible parameter columns displayed in the Acquisitions table in the Acquisitions tab of the Setup panel. Columns displayed depend on the tests selected in the **Test Selection** tab, and whether or not the **Show Acquire Parameters** check box has been selected.

Column name	Function
Test Name	Displays the name of the selected test for performing acquisitions. One or more tests can perform the same acquisitions.
Acquisition	Updates the location of the named acquisition
Record Length	Displays the size of the record in M
Sample Rate (GS/s)	How often the oscilloscope takes a snapshot or sample of the signal
Diff Probe Vertical Scale (mV/Div)	Displays the vertical scale for the differential probe
Diff Probe Vertical Position (Div)	Displays the vertical position of the differential probe
CM Probe Vertical Scale (mV/Div)	Displays the vertical scale for the differential probe
CM Probe Vertical Position (Div)	Displays the vertical position of the differential probe
Probe attenuation (X)	Displays attenuation factor for the probe
Edge Trigger Level (%)	Displays the edge trigger level, in percentage
Measurement Repetition (count)	Displays the number of measurement repetitions
Population Count	Specifies a limit to the amount of waveform data that is analyzed
Vertical Scale	Displays the vertical scale for the non differential probe
Vertical Position	Displays the vertical position for the non differential probe
WaveForm FileName	Displays the name and location of the waveform file to be used for the measurement. Applies only to testing using prerecorded waveforms.

- 5. Underneath the table, you may check the Show Acquired Parameters check box. When selected, the acquisition parameters for each test display in additional columns in the Acquisitions table.
- 6. You may check the Acquire Step by Step check box. When selected, the software prompts you to continue after each phase of the test completes.

If you have chosen Use Pre-recorded waveform files on the DUT tab:

- 1. In the Setup panel, click the <u>Acquisitions (see page 71)</u> tab.
- You'll see the Acquisitions table. Locate the row for the desired test and then click the ellipsis button
 (iii) in the Waveform FileName column. Select a file. You can select more than one file for each test.
 For information about the possible parameter columns displayed in the Acquisitions table, click here.

The table below lists the possible parameter columns displayed in the Acquisitions table in the Acquisitions tab of the Setup panel. Columns displayed depend on the tests selected in the **Test Selection** tab, and whether or not the **Show Acquire Parameters** check box has been selected.

Column name Function	
Test Name	Displays the name of the selected test for performing acquisitions. One or more tests can perform the same acquisitions.
Acquisition	Updates the location of the named acquisition
Record Length	Displays the size of the record in M
Sample Rate (GS/s)	How often the oscilloscope takes a snapshot or sample of the signal
Diff Probe Vertical Scale (mV/Div)	Displays the vertical scale for the differential probe
Diff Probe Vertical Position (Div)	Displays the vertical position of the differential probe
CM Probe Vertical Scale (mV/Div)	Displays the vertical scale for the differential probe
CM Probe Vertical Position (Div)	Displays the vertical position of the differential probe
Probe attenuation (X)	Displays attenuation factor for the probe
Edge Trigger Level (%)	Displays the edge trigger level, in percentage
Measurement Repetition (count)	Displays the number of measurement repetitions
Population Count	Specifies a limit to the amount of waveform data that is analyzed
Vertical Scale	Displays the vertical scale for the non differential probe
Vertical Position	Displays the vertical position for the non differential probe
WaveForm FileName	Displays the name and location of the waveform file to be used for the measurement. Applies only to testing using prerecorded waveforms.

3. Underneath the Acquisitions table, you may check the Show Acquired Parameters check box. When selected, the acquisition parameters for each test display in additional columns in the Acquisitions table.

Viev	v Probes Button	
22		×
	Probe Configuration	
	CH1 : "P7313SMA"	
	CH2 : Not Used	
	CH3 : "P7240"	
	CH4 : Not Used	
	Refresh Close	

Acquisitions Table

The table below lists the possible parameter columns displayed in the Acquisitions table in the Acquisitions tab of the Setup panel. Columns displayed depend on the tests selected in the **Test Selection** tab, and whether or not the **Show Acquire Parameters** check box has been selected.

Column name	Function
Test Name	Displays the name of the selected test for performing acquisitions. One or more tests can perform the same acquisitions.
Acquisition	Updates the location of the named acquisition
Record Length	Displays the size of the record in M
Sample Rate (GS/s)	How often the oscilloscope takes a snapshot or sample of the signal
Diff Probe Vertical Scale (mV/Div)	Displays the vertical scale for the differential probe
Diff Probe Vertical Position (Div)	Displays the vertical position of the differential probe
CM Probe Vertical Scale (mV/Div)	Displays the vertical scale for the differential probe
CM Probe Vertical Position (Div)	Displays the vertical position of the differential probe
Probe attenuation (X)	Displays attenuation factor for the probe
Edge Trigger Level (%)	Displays the edge trigger level, in percentage
Measurement Repetition (count)	Displays the number of measurement repetitions
Population Count	Specifies a limit to the amount of waveform data that is analyzed
Vertical Scale	Displays the vertical scale for the non differential probe
Vertical Position	Displays the vertical position for the non differential probe
WaveForm FileName	Displays the name and location of the waveform file to be used for the measurement. Applies only to testing using prerecorded waveforms.

See also

- Use Prerecorded Waveforms for Analysis MHL Transmitter only (see page 72)
- Acquire Live Waveforms for Analysis MHL Transmitter only (see page 73)
- Setting Up Tests the Setup Panel (see page 47)

Use Prerecorded Waveforms for Analysis (MHL Transmitter only)

NOTE. If you are using the prerecorded waveform files option, it is recommended that you use a waveform file (.wfm) that was captured from a Tektronix oscilloscope. This eliminates the need to use an oscilloscope. You can manually select waveforms and perform the tests by clicking the **Start** button.

- 1. Open a saved test setup (see page 102) or create a new one (see page 102).
- 2. In the Setup panel, select the **DUT** tab, select the desired DUT and then select **Use pre-recorded** waveform files.
- 3. In the Test Selection tab, select the desired tests (see page 62).
- 4. In the Acquisitions tab, locate the row for the desired test in the <u>Acquisitions Table (see page 72)</u>. In the **Waveform FileName** column for that test, click the ellipses button () and select the desired waveform file.
- 5. Perform any additional desired test setup, such as <u>test configuration (see page 74)</u>, and then click **Start** to run the test.

You can select a different waveform file for each test, deselect a test from the current run, or add a test to the current run. Once you click **Start**, data corresponding to that test run populates the other panels (such as the test status and test results).

See also

- Acquiring Waveforms the Acquisitions tab MHL Transmitter only (see page 67)
- Acquire Live Waveforms for Analysis MHL Transmitter only (see page 73)

Acquire Live Waveforms for Analysis (MHL Transmitter only)

Use these instructions to set up acquisition for a live waveform.

- 1. Open a saved test setup (see page 102) or create a new one (see page 102).
- 2. In the Setup panel, select the DUT tab, enter the desired DUT and then select Acquire live waveforms.
- 3. <u>Select other DUT options (see page 52)</u> as desired.
- 4. In the Test Selection tab, select the desired test(s) (see page 62).
- 5. In the Acquisitions tab, select or view the desired parameters in the Acquisitions Table (see page 72).
- 6. Configure the tests (see page 74) if you have not done so already. Then click Start to run the test.

See also

- Acquiring Waveforms the Acquisitions tab MHL Transmitter only (see page 67)
- Use Prerecorded Waveforms for Analysis MHL Transmitter only (see page 72)

Configuring Tests: the Configuration Screen

Once you've selected tests, you may use the <u>Configuration screen (see page 75)</u>. There are two ways to reach the screen: the Configuration tab or the Configure button.

The MHL solution you are using determines how you may reach the Configuration screen.

If you chose MHL Transmitter in the Setup panel DUT tab:

- and you selected Compliance View in the Setup panel DUT tab, click on the Test Selection tab and select the desired test. Then click on the Configure (see page 77) button in the lower right corner of the Test Selection tab.
- and you selected Advanced View in the Setup panel DUT tab, the <u>Configuration tab (see page 75)</u> will appear on the Setup panel click on it.

If you chose MHL Receiver in the Setup panel DUT tab: You may view the configuration settings by either clicking on the **Configuration** tab, or clicking on the **Configure** button on the Test Selection tab.

The **Configuration** screen shows **Global** parameters, which are common for all tests, and **Measurement** parameters, which are specific to selected tests, including acquisition, analysis, and limit parameters.

NOTE. Test parameters that are grayed cannot be changed.

Settings

- Compliance Mode or User Defined Mode (see page 78) (MHL Transmitter only.)
- Global Settings tab

In the **Instruments Detected** section, click in the shaded area opposite **Real Time Scope** and select the desired instrument from the drop-down list. If you don't see the instrument, refresh the list by using the <u>Instrument Control Settings (see page 37)</u>.

DSP Filter (8 GHz) (MHL Transmitter only.)

You may check this box if the DUT has a bandwidth greater than 8 GHz. This applies an 8 GHz low pass filter to all transmitter tests.

- Measurements tab
 - If you are using MHL Transmitter:

You may change test parameters. Select the test whose parameters you'd like to change. The options below the test list change to reflect the selected test.

To modify the parameters, select the desired tab and parameters. For parameter details, see Measurement Parameter Descriptions: MHL Transmitter (see page 79).

- If you are using MHL Receiver:

You may not change test parameters, but you may view the <u>Measurement Parameter</u> Descriptions: MHL Receiver (see page 83).

Limits Editor

Use the Limits Editor (see page 76) button in the upper right corner to view or change the High Limit and Low Limit values used for each measurement.

Next, prepare to run the tests. (see page 85)

- Setting Up Tests: the Setup Panel (see page 47)
- Selecting Device Parameters: the DUT tab (see page 52)
- Choosing Tests: the Test Selection tab (see page 62)
- Acquiring Waveforms: the Acquisitions tab MHL Transmitter only (see page 67)
- About Saving and Recalling Test Setups (see page 101)

imits Editor						
ew or Edit the values used t blank cell means no limit value is	for High Limit and applied	d Low Limit for ea	ach measu	rement		
Test Name	Details	Compare String	Low Limit	Compare String	High Limit	
1 1 1 Tenut Genal DC Veltage I	Input Signal DC Volt	>= Greater Than O	2.1	<= Less Than Or E		_
k.1.1.1 Input Signal DC ¥oltage L	Input Signal DC Vol	>= Greater Than O	3.0	<= Less Than Or E		_
	Sink Input Signal No	>= Greater Than O	2.55	<= Less Than Or E		
4.1.1.2 Input Signal Minimum an	Sink Input Signal M	>= Greater Than O	2.1	<= Less Than Or E		
	Sink Input Signal Mi	>= Greater Than O	3	<= Less Than Or E		
	Sink Intra-Pair Posit	>= Greater Than O	0	<= Less Than Or E	93	
.1.1.3 Intra-Pair Skew Tolerance	Sink Intra-Pair Neg	>= Greater Than O	0	<= Less Than Or E	93	
	Sink Jitter Toleranc	>= Greater Than O	2.1	<= Less Than Or E		
4.1.1.4 Jitter Folerance	Sink Jitter Toleranc	>= Greater Than O	3	<= Less Than Or E		$\overline{}$

Express MHL - (Untitle	d)*	Options
etup atus ports DUT Test Selection 3 Configuration 4 Preferences	Compliance Mode Global Settings Measurements 4.1.1.1 Input Signal DC Voltage Level Tolerance 4.1.1.2 Input Signal Minimum and Maximum Swing Voltages Toleran 4.1.1.3 Intra-Pair Skew Tolerance 5.1.1.1 Input Signal Single-Ended Voltage Level Tolerance 5.1.1.2 Input Signal Minimum and Maximum Swing Voltages Toleran 5.1.1.3 Intra-Pair Skew Tolerance 5.1.1.4 Jitter Tolerance 5.1.1.4 Jitter Tolerance 5.1.1.4 Jitter Tolerance 5.1.1.4 Jitter Tolerance 5.1.1.5 Intra-Pair Skew Tolerance 5.1.2 Input Signal Minimum and Maximum Swing Voltages Toleran 5.1.1.4 Jitter Tolerance 5.1.2 Input Signal Minimum and Maximum Swing Voltages Toleran 5.1.2 Input Signal Minimum and Maximum Swing Voltages Toleran 5.1.3 Intra-Pair Skew Tolerance 5.1.4 Jitter Tolerance 5.1	ICCE
niv Status Ready		

Configuration tab

Compliance Mode or User Defined Mode

From the Configuration screen, if you are using MHL Transmitter, you will have the option to select either Compliance Mode or User Defined Mode.

- Compliance Mode: Select to use Compliance Mode values. You cannot change most test parameters in Compliance Mode, but you can view the compliance parameters.
- User Defined Mode: Select to run tests using custom parameters. You may change parameters that are not grayed out.

Note that these modes are not to be confused with the two views available for MHL Transmitter: **Compliance View** and **Advanced View** (selected in the **DUT** tab of the Setup panel).

Pairing Modes and Views for Test Operation

Your selections of Modes and Views will change the way the tests operate. These pairings of views and modes are possible for MHL Transmitter.

Compliance View selected with **Compliance Mode**:

Tests will run automatically with little or no user intervention. You will not be able to change test parameters to anything that deviates from the compliance standards. To view configuration options, click on the Test Selection tab of the Setup panel and click the Configure button.

- Compliance View selected with User Defined Mode: Tests will run automatically but you will be able to change test parameters before starting the tests. To view configuration options, click on the Test Selection tab of the Setup panel and click the Configure button.
- Advanced View selected with Compliance Mode: Tests will run automatically with little or no user intervention. You will not be able to change test parameters to anything that deviates from the compliance standards. To view configuration options, click on the Configuration tab of the Setup panel.
- Advanced View selected with User Defined Mode: Tests will run automatically but you will be able to change test parameters before starting the tests. To view configuration options, click on the Configuration tab of the Setup panel.

Measurement Parameter Descriptions (MHL Transmitter)

View or change measurement parameters in the **Configuration** tab of the Setup panel. Measurement parameters are displayed for the test selected in the tree view section. Not all of the parameters listed apply to all tests, and some are only available when running tests in **User Defined** Mode. You cannot change most parameters if you selected **Compliance** Mode.

Parameter type	Parameter	Description	Applies to
Scope Settings	Sample Rate	Specified in GS/s. How often the digital oscilloscope takes a snapshot or sample of the signal.	All tests
	Record Length (M)	Set the record length to use.	All tests
	Edge Trigger Level (%)	Select the edge trigger level, in percentage.	All tests
	Population Count	Specifies a limit to the amount of waveform data that is analyzed.	3.1.1.2, 3.1.1.3, 3.1.1.4, 3.1.1.5, 3.1.1.6, 3.1.1.7, 3.1.1.8
	Measurement Repetition (Count)	Specifies the number of measurement repetitions used to measure the average value in the Clock Jitter test (3.1.1.11). If the Required Population count is not received from the acquired waveform, the application will take that count from this field.	3.1.1.11, 3.1.1.15

Table 13: MHL Transmitter Clock and MHL Data measurements

Parameter type	Parameter	Description	Applies to
Vertical Setup	Probe Attenuation (X)	Select the appropriate attenuation factor for the probe.	All tests
	Diff Probe Vertical Position (Div)	Select the vertical position of the differential probe.	3.1.1.4, 3.1.1.5, 3.1.1.6, 3.1.1.7, 3.1.1.10, 3.1.1.11, 3.1.1.12, 3.1.1.14, 3.1.1.15, 3.1.1.16
	Diff Probe Vertical Scale (mV/Div)	Select the vertical scale for the differential probe.	3.1.1.4, 3.1.1.5, 3.1.1.6, 3.1.1.7, 3.1.1.10, 3.1.1.11, 3.1.1.12, 3.1.1.14, 3.1.1.15, 3.1.1.16
	CM Probe Vertical Position (Div)	Select the vertical position for the common mode probe.	3.1.1.4, 3.1.1.5, 3.1.1.6, 3.1.1.7, 3.1.1.10, 3.1.1.11, 3.1.1.12, 3.1.1.14, 3.1.1.15, 3.1.1.16
	CM Probe Vertical Scale (mV/Div)	Select the vertical scale for the common mode probe.	3.1.1.4, 3.1.1.5, 3.1.1.6, 3.1.1.7, 3.1.1.10, 3.1.1.11, 3.1.1.12, 3.1.1.14, 3.1.1.15, 3.1.1.16
	Vertical Position (Div)	Used in vertical setup to position the waveform. Sets the number of divisions of the signal. Adjusts the display of the graticule relative to the vertical acquisition window.	3.1.1.2, 3.1.1.3, 3.1.1.8
	Vertical Scale (mV/Div)	Used in vertical setup to position the waveform. Specifies the waveform vertical scale.	3.1.1.2, 3.1.1.3, 3.1.1.8

Table 13: MHL Transmitter Clock and MHL Data measurements (cont.)

Parameter type	Parameter	Description	Applies to
Ref Levels	Absolute	Use to manually set the reference levels.	All Tests
	Percentage	Use to set the reference levels as a percentage.	All tests
	Mid Level	A reference voltage level that defines when the waveform state transition occurs at a given threshold.	All tests
	Hysteresis	Used to prevent small amounts of noise in a waveform from producing multiple threshold crossings. Use when the rising and falling thresholds for a given reference voltage level are set to the same value.	All tests
Clock Settings	PLL Model	Selects between Type 1 and Type 2 phase-locked loop.	3.1.1.11, 3.1.1.12, 3.1.1.15, 3.1.1.16
	Clock Recovery Method	 PLL-Custom BW Constant Clock-Mean Explicit Clock: (Applies to test 3.1.1.12 only) This method derives the reference clock from 	3.1.1.11 and 3.1.1.12, 3.1.1.15, 3.1.1.16
		a channel other than the one upon which the measurement is defined.	
	Clock Multiplier	Specifies the number of edges to be used in the measurement.	3.1.1.12, 3.1.1.16
	Loop Band Width (MHz)	Sets the bandwidth of the clock recovery PLL.	3.1.1.12, 3.1.1.16
	Loop Band Width Low Res. (MHz)	Sets the bandwidth of the clock recovery PLL.	3.1.1.11, 3.1.1.15
	Loop Band Width High Res. (MHz)	Sets the bandwidth of the clock recovery PLL.	3.1.1.11, 3.1.1.15
	Clock Edge	Specifies whether the rising, falling, or both edges of the selected source should be considered in the measurement.	3.1.1.11, 3.1.1.12, 3.1.1.15, 3.1.1.16

Table 13: MHL Transmitter Clock and MHL Data measurements (cont.)

See Also

- Measurement Parameter Descriptions: MHL Receiver (see page 83)
- Configuring Tests: the Configure button or Configuration tab

Measurement Parameter Descriptions (MHL Receiver)

View or change measurement parameters in the **Configuration** tab of the Setup panel. Measurement parameters are displayed for the test selected in the tree view section. Not all of the parameters listed apply to all tests.

Parameter type	Parameter	Description	Applies to
Scope Setting	VTerm (V)	VTerm voltage of the fixture	All Tests
AWG Setting	Data Streams (KHz)	Data Stream of AWG Pattern	All Tests
	Diff Rise/Fall Time (ps)	Differential Rise/Fall Time of AWG Pattern	All Tests
	CM Rise/Fall Time (ps)	Common Mode Rise/Fall Time of AWG Pattern	All Tests
	Diff Swing Voltage (mV)	Differential Swing voltage of AWG Pattern	4.1.1.1, 4.1.1.3, 4.1.1.4 (CTS 1.X only), 5.1.1.1, 5.1.1.3, 5.1.1.4 (CTS 1.X only)
	CM Swing Voltage (mV)	Common Mode Swing voltage of AWG Pattern	4.1.1.1, 4.1.1.3, 4.1.1.4 (CTS 1.X only), 5.1.1.1, 5.1.1.3, 5.1.1.4 (CTS 1.X only)

Table 14: MHL Receiver Sink and MHL Dongle measurements

- Measurement Parameter Descriptions: MHL Transmitter (see page 79)
- Configuring Tests: the Configure button or Configuration tab (see page 74)

Before You Click Start

Before Running a Test for the First time

Before you run a test for the first time, review these steps:

1. Understand where your test files are stored on the instrument.

After you install and launch TekExpress MHL, it creates the following folders on the oscilloscope:

- Program Files\Tektronix\TekExpress\TekExpress MHL (for WINXP scopes)
- \Program Files (x86)\Tektronix\TekExpress\TekExpress MHL (for WIN7 scopes)
- My Documents\My TekExpress\MHL
- \My Documents\My TekExpress\MHL\Untitled Session

Every time you launch TekExpress MHL.exe, an Untitled Session folder is created in the MHL folder. The Untitled Session folder is automatically deleted when you exit the MHL application.

CAUTION. Do not modify any of the session files or folders because this may result in loss of data or corrupted session files. Each session has multiple files associated with it. When you save a session, a .TekX file, and a folder named for the session that contains the associated files, is created on the oscilloscope X: drive.

2. <u>Map the shared My TekExpress</u> folder as X: (see page 191)

NOTE. If the X: drive is mapped to any other shared folder, the application will display a warning message asking you to disconnect the X: drive manually.

- **3.** Ensure that the **My TekExpress** folder has read and write access, and that the contents are not set to be encrypted:
 - a. Right-click the folder and select Properties.
 - b. Select the General tab and then click Advanced.
 - c. In the Advanced Attributes dialog box, ensure that the option Encrypt contents to secure data is NOT selected.

Example:

My TekExpress Properties	? ×	
General Sharing Web Sharing Customize		
My TekExpress		
Advanced Attributes	?	×
Choose the settings you want for this folder When you apply these changes you will be asked if changes to affect all subfolders and files as well.	you want th	ne
Archive and Index attributes		
Folder is ready for <u>a</u> rchiving		
✓ For fast searching, allow Indexing Service to index this	s folder	
Compress or Encrypt attributes		
Compress contents to save disk space		
Encrypt contents to secure data	<u>D</u> etails]
ОК	Cancel	
OK Cancel	Apply	

Before running any test

- 1. Review the Pre Run Check List (see page 87).
- 2. Configure the <u>Email notification options</u> if you want the application to notify you by email when a test completes or produces an error. Access the email options either from the Options menu in the upper right corner, or from the **Preferences tab** on the Setup panel.
- 3. Select the <u>Report Options (see page 97)</u>.

- PreRun Check List (see page 87)
- Configure Email Notification (see page 87)

Running the Tests and Viewing their Progress (see page 89)

Pre-Run Check List

Do the following before you click Start to run a test. If this is the first time you are running a test on a setup, then refer also to the guidelines above.

- 1. Ensure that all the required instruments are properly warmed up (about 20 minutes).
- 2. Perform the Signal Path Compensation (SPC).
 - a. On the oscilloscope main menu, select the Utilities menu.

b. Select Instrument Calibration.

- **3.** Deskew any cables.
- **4.** Ensure that the application is able to find the DUT. If it cannot, <u>perform a search for connected</u> instruments (see page 37).

To find the DUT:

- a. Launch the TekExpress MHL application.
- b. Select the Setup panel and then click the DUT tab. For Suite, select MHL Transmitter.
- c. Click the Test Selection tab. Select any test and then click Configure.
- d. In the Configuration section, click Global Settings.
- e. In the Instruments Detected section, click in the shaded area opposite Real Time Scope and make sure that the oscilloscope with the (GPIB8::1::INSTR) designation is in the drop-down list.

See also

Before You Click Start (see page 85)

- Configure Email Notification (see page 87)
- Running the Tests and Viewing their Progress (see page 89)

Configure Email Notification

Set up these email settings if you want the application to notify you by email when a test completes or produces an error. Configure email from the Options menu.

1. From the **Options** menu in the upper right corner, select **Email Settings** to open the Email Settings dialog box, or click the **Preferences** tab on the Setup panel.

Email Settings	
Recipient e-mail Address(es) Note: Separate Email ad	Idlesses with a comma
Sender's Address	
Email Attachments	Server Configuration
Reports	SMTP Server SMTP Port
ScoreCard	Login
Analysis Screenshot	Password
Status Log OLast 20 Lines OFull Log	Host Name
Email Configuration	
Email Format 💿 HTML OPlain Text	Number of Attempts to Send 1
Max Email Size (MB) 5	Timeout
Email Test Results When complete or on error	Test Em Apply Close

- 2. (Required) For **Recipient email Address(es)**, enter your email address. You can include multiple addresses as long as you separate the addresses with commas.
- **3.** (Required) For **Sender's Address**, enter the email address used by the instrument. This address consists of the instrument name, followed by an underscore, followed by the instrument serial number, the @ symbol, and the email server used. For example: DPO72004C_B130099@yourcompany.com.
- 4. (Required) In the Server Configuration section, type the SMTP Server address of the Mail server configured at the client location, and the SMTP Port number, in the corresponding fields.

If this server requires password authentication, enter a valid login name, password, and host name in the corresponding fields.

NOTE. If any of the above required fields are left blank, the settings will not be saved and email notifications will not be sent.

- 5. In the Email Attachments section, select from the following options:
 - **Reports**: Select to receive the test report with the notification email.
 - Status Log: Select to receive the test status log with the notification email. If you select this option, then also select whether you want to receive the full log or just the last 20 lines.

NOTE. The ScoreCard and Analysys Screenshot options are not available in MHL.

- 6. In the Email Configuration section, select as desired:
 - Select the message file format to send: HTML (the default) or plain text.
 - Enter a maximum file size for the email message. Messages with attachments larger than this limit will not be sent. The default is 5 MB.
 - To limit the number of attempts the system makes to send a notification, enter the number in the **Number of Attempts to Send** field. The default is 1. You can also specify a timeout.
- 7. Select the **Email Test Results when complete or on error** check box. Use this check box to quickly enable or disable email notifications.
- 8. To test your email settings, click Test Email.
- 9. To apply your settings, click Apply.
- **10.** Click **Close** to exit the Email Settings dialog box.

See also

Before You Click Start (see page 85)

- PreRun Check List (see page 87)
- Running the Tests and Viewing their Progress (see page 89)

Running the Tests and Viewing their Progress: the Status Panel

Once you've configured the tests and gone through the <u>Pre-run Check List (see page 87)</u>, from any screen, click the green **Start** button.

The application acquires and analyzes the data, then displays a report when the tests are complete. While the tests are running, other applications may display windows in the background. The TekScope application takes precedence over other applications, but you can switch to other applications using the Alt+Tab key combination. To keep the TekExpress MHL application on top, select Keep On Top from the Options menu in the upper right corner.

Viewing the Progress of Analysis

The <u>Status panel (see page 91)</u> displays a record of the test as it is executed. By default, the application switches to this panel after you click the Start button to run a test. You can choose from the following two views by selecting the named tab, even while a test is in progress:

Test Status view

The <u>Test Status tab (see page 92)</u> presents a collapsible table with information about each test as it is running. To collapse and expand the table rows, click the expand (=)/(=) collapse button.

Column	Description
Test Name	Name of the test
Acquisition	Describes the type of data being acquired
Acquire Status	Progress of the acquisition:
	To be started
	Started Acquisition
	Completed Acquisition
	Pre-Recorded Mode
Analysis Status	Progress state of the analysis:
	To be started
	In Progress
	Completed
	Aborted

Table 15: Status tab table

Log View

The Log View tab (see page 93) provides a list of actions that happen as the test executes. You can use this tab to review or troubleshoot tests.

Table 16: Log View options

Item	Description
Message History	This window time-stamps and displays all run messages.
Show Detailed Log	Select this check box to record a detailed history of test execution.
Auto Scroll	Select this check box to have the program automatically scroll down as information is added to the log during test execution.
Clear Log	Click this button to clear all messages in the Message History area.
Save	Use to save the log file as a text file for examination. Displays a standard Save File window and saves the status messages file that you specify.

Test Name	Acquisition	Acquire Status	Analysis Status	
3				
3.1.1.11 MHL Clock Jitter in Normal Mode	Short Record-length for DPOJET			
3.1.1.15 MHL Clock Jitter in PackedPixel Mode	Short Record-length for DPOJET			Pause
3.1.1.12 MHL Data Eye Diagram in Normal	Short Record-length for DPOJET			
3.1.1.16 MHL Data Eye Diagram in PackedPixel Mode	Short Record-length for DPOJET			
3.1.1.5 Common-mode Output Swing Voltage-V_CMSWING	Short Record-length for MHL CM Swing			
3.1.1.4 Differential Output Swing Voltage-VDF_SWING	Short Record-length for MHL Diff Swing			
3.1.1.7 Common-mode Rise and Fall Times-TR_CM, TF_CM	Short Record-length for MHL Transmitter CM			
3.1.1.10 MHL Clock Duty Cycle in Normal Mode	Short Record-length for MHL Transmitter CM			
3.1.1.14 MHL Clock Duty Cycle in PackedPixe Mode	Short Record-length for MHL Transmitter CM			
3.1.1.8 Differential Intra-Pair Skew-TSKEVV_DF	Short Record-length for MHL Transmitter Diff High Resolution			
3.1.1.6 Differential Rise and Fall Times-TR_DF, TF_DF	Short Record-length for MHL Transmitter Diff RTFT			
3.1.1.2 Single-ended High Level Voltage-VSE_HIGH	Short Record-length for MHL Transmitter SE High			
3.1.1.3 Single-ended Low Level Voltages-VSE_LOW	Short Record-length for MHL Transmitter SE Low			
3.1.1.1 Standby Output Voltage-VOFF	Short Record-length for Standby Output Voltage			
tatus Ready				J

See also

- Before You Click Start (see page 85)
- PreRun Check List (see page 87)
- Configure Email Notification (see page 87)

TekExp	ress MHL - (test1)*			Options
	Test Status Log View			
up	Test Name	Acquisition	Acquire Status	Analysis Status
	8			
us	3.1.1.11 MHL Clock Jitter in Normal Mode	Short Record-length for DPOJET		
	3.1.1.15 MHL Clock Jitter in PackedPixel Mode	Short Record-length for DPOJET		
sults	3.1.1.12 MHL Data Eye Diagram in Normal	Short Record-length for DPOJET		
Jound	3.1.1.16 MHL Data Eye Diagram in PackedPixel Mode	Short Record-length for DPOJET		
ports	3.1.1.5 Common-mode Output Swing Vottage-V_CMSWING	Short Record-length for MHL CM Swing		
	3.1.1.4 Differential Output Swing Voltage-VDF_SWING	Short Record-length for MHL Diff Swing		
	3.1.1.7 Common-mode Rise and Fall Times-TR_CM, TF_CM	Short Record-length for MHL Transmitter CM		
	3.1.1.10 MHL Clock Duty Cycle in Normal Mode	Short Record-length for MHL Transmitter CM		
	3.1.1.14 MHL Clock Duty Cycle in PackedPixe Mode	Short Record-length for MHL Transmitter CM		
	3.1.1.8 Differential Intra-Pair Skew-TSKEVV_DF	Short Record-length for MHL Transmitter Diff High Resolution		
	3.1.1.6 Differential Rise and Fall Times-TR_DF, TF_DF	Short Record-length for MHL Transmitter Diff RTFT		
	3.1.1.2 Single-ended High Level	Short Record-length for MHL Transmitter SE High		
	Voltage-VSE_HIGH	in all of the right		
	Vottage-VSE_HIGH 3.1.1.3 Single-ended Low Level Vottages-VSE_LOW	Short Record-length for MHL Transmitter SE Low		

ekExpress MHL - (singleen	ed)	Options 💌	
Test Status Log View			Start
qt	Message History	Show Detailed Log	
US 7/5/2011 3:44:17 AM::Write: 7/5/2011 3:44:17 AM::Write: 7/5/2011 3:44:17 AM::Write: 7/5/2011 3:44:18 AM::Setting 7/5/2011 3:44:18 AM::Setting 7/5/2011 3:44:18 AM::Setting 7/5/2011 3:44:20 AM::Setting 7/5/2011 3:44:20 AM::Setting 7/5/2011 3:44:20 AM::Setting 7/5/2011 3:44:23 AM::Saved 7/5/2011 3:44:32 AM::Saved 7/5/2011 3:44:32 AM::Saved 7/5/2011 3:44:35 AM::Setting 7/5/2011 3:44:35 AM::Setting 7/5/2011 3:44	13:PROBE:RANGE ATTEN12_5X 13:Vterm:MODE Internal 13:Vterm:BIAS 3.465 sh1:DEFINE "(CH2+CH3)/2" isplay for Math 1 isplay for Math 1 isplay for Math 1 isplay for Math 2 isplay for Math 2 isplay for Math 2 isplay for Math 2 waveform wing acquire single sequence operation to complete acquisition. Acquisition state is 0 ed acquire single sequence operation waveform XMHLVUnitided Session/DUT001\20110705, to save waveform Killer form scope laveform XiMHLVUnitided Session/DUT001\20110705, to save waveform Killer form scope aveform Killer XMHLVUnitided Session/DUT001\20110705, to save waveform Killer form scope aveform XiMHLVUnitided Session/DUT001\20110705, to save waveform Killer form scope aveform Killer XMHLVUnitided Session/DUT001\20110705, to save waveform file from scope aveform file: XiMHLVUnitided Session/DUT001\20110705, to saveform file: XiMHLVUnitided Session/SUT001\20110705, to sa	_033344\3112_25 MHz_CH1_3.46 705_033344\3112_25 MHz_CH1_3 _033344\3112_Math1_2.wfm on th 705_033344\3112_Math1_2.wfm _033344\3112_Math2_3.wfm 705_033344\3112_Math2_3.wfm 1033344\3112_25 MHz_CH2_3.46 705_033344\3112_25 MHz_CH2_3 ↓ Clear Log	Pause

Viewing Test Results: the Results Panel

When a test completes running, the application switches to the Results Panel (see page 96).

Set result viewing preferences from the Preferences (see page 96) menu in the upper right corner.

Each test result occupies a row in the Results table. By default, results are displayed in summary format, with the measurement details collapsed, and with the Pass/Fail column visible. You can change the display view.

- To expand all test rows listed, from the Preferences menu in the upper right corner, select View Results Details.
- To expand a collapsed test row, click the plus button () to the left of the test row.
- To collapse all expanded test rows, select **Preferences > View Results Summary**.
- To collapse a single expanded test row, click the minus button (\Box) to the left of the test row.
- To remove or restore the Pass/Fail column, select **Preferences > Show Pass/Fail**.
- To enable or disable the wordwrap feature, select **Preferences > Enable Wordwrap**.
- To expand the width of a column, place the cursor over the vertical line that separates the column from the one to the right. When the cursor changes to a double-ended arrow, hold down the mouse button and drag the column to the desired width.
- To sort the test information by column, click the column head. When sorted in ascending order, a small up arrow is displayed. When sorted in descending order, a small down arrow is displayed.
- To clear all test results displayed, click Clear

×.

- Setting Up Tests the Setup Panel (see page 47)
- Configuring and Viewing Reports: the Reports Panel (see page 97)
- Running the Tests and Viewing their Progress: the Status Panel (see page 89)

U	verali Test Result : 🛛 💟	Pass		2			Preference	IS T	Start
	Description	Pass/F	Details	TBit	VTerm	Value	Margin		C
,	3.1.1.2 Single-ended High Level Voltage-VSE_HIGH	🦁 Pass	Single-end ed Positive High Level Voltage at VTerm1	1322.77 ps	3.135 V	2868.6	273.6, 276.4		Pause
	High Limit	🥑 Pass				3145 m¥			
	Low Limit	🔮 Pass				2595 m¥			Clear
	3.1.1.2 Single-ended High Level - Voltage-VSE_HIGH	🥑 Pass	Single-end ed Negative High Level Voltage at	1322.77 ps	3.135 V	2847	252, 298		×
	High Limit	🔮 Pass				3145 m¥		-	
	Low Limit	🕜 Pass				2595 m¥			
	3.1.1.2 Single-ended High Level + Voltage-VSE_HIGH	🥑 Pass	Single-end ed Positive High Level Voltage at VTerm2	1322.77 ps	3.465 V	3177	252, 298		
	3.1.1.2 Single-ended High Level + Voltage-VSE_HIGH	🥑 Pass	Single-end ed Negative High Level Voltage at	1322.77 ps	3.465 V	3148.2	223.2, 326.8		
	3.1.1.8 Differential + Intra-Pair Skew-TSKEW_DF	🥑 Pass	Differential Intra-Pair Skew at VTerm1	1322.76 ps	3.135 V	11.4684	38.5316		

Results Prefer	rences	X
	Options 🔻	Start
erm Value	 Show Pass/Fail View Results Summar View Results Details Enable Wordwrap 	Pause II Clear

Configuring and Viewing Reports: the Reports Panel

Use the <u>Reports panel (see page 99)</u> to browse for, name, and save reports, select report viewing options, and to view reports.

Naming a Report

Use the Reports Panel to select the naming convention to use for the report. By default, the test report file is located in the session folder to which it belongs, and gets overwritten each time you run the test under the same device name if you don't change the test report name before running the test.

If you do not want your test results to be overwritten each time you run any test, always give the report a unique name, or select to have the name increment each time you run a particular test. Generally, you would select report options before running a test, or when creating and saving test setups. Report settings are included in saved test setups.

Selecting Report Options

Report Name

Displays the default name and location where the report will be saved when generated.

To change the report name or location, type over the current folder path and name and then save the test setup. Be sure to include the entire folder path, the file name, and the file type. For example: C:\Documents and Settings\your user name\My Documents\My TekExpress\MHL\DUT001_group1.mht.

To open an existing report, click Browse, locate the report file and then click View.

NOTE. You cannot change the file location using the Browse button.

Save As Type

Saves a report in a file type different from the default. Lists supported file types to choose from.

NOTE. If you select a file type different from the default, be sure to change the report file name extension in the Report Name field to match.

Auto increment report name if duplicate

If the application finds a report with the same name as the one being generated, the application automatically increments the name of the report. For example: DUT001, DUT002, DUT003

Include User Comments

Select to include any comments about the test that you or another user added in the DUT tab of the Setup panel. Comments appear in the Comments section under the summary box at the beginning of each report.

Append Reports

This option adds new report data to the end of an existing report of the same name. This option is deselected by default.

View Report After Generating

Automatically opens the report in your Web browser when the test completes. This option is selected by default.

NOTE. If you unchecked this option before running a test but now would like to view the report, then when analysis is complete, click the **Browse** button at the top of the Reports panel and navigate to the report file.

Viewing a Report

You can view any report by locating and opening the report file, which ends in .mht unless you changed the file type before running the report.

The top of the report displays information about the instruments and probes used, the duration of the test, software versions, and some summary test information. Below that is a table that shows the test name, measurement details, various measurements, test result (pass/fail), Compliance Mode status (Yes/No), and analysis time. Additional test parameter information that does not fall into the other columns is put in the Comments column.

Report example

Tektronix [®] Enabling Innovation		MF	TekE	xpress MHL nitter Test	Report							
DUT ID : DUT001 Date/Time : Aug. 09, 2012 / 10:41:29					Device Type execution Time	MHL Physical La 1 Hrs 10 Min	yer Solution	_	MC	OVerall Com	Spec Version	: CTS 2.0 : No
Scope Model: MSO/72004 Probe1 Model: "P73135MA" Probe2 Model: "P72135MA" Probe3 Model: "P7249"	Scope Senial Number Protect Senial Number Protect Senial Number Protect Senial Number	8010111 "9020882" "8020877" "9018429"					Scope F/W Version TekExpress Version DPOJET Version DSP Filter (8 GHz)	640 TekExpress '360 Build Enabled	MHL: 3.0.0.20 32*	SPC, 0, Framework 2.0	FactoryCalibration	PASS,PASS
Test Name	Measurement Details	Tbit	VTerm	Low Limit	Measured value	High Limit	Margin	Units	Test Result	Compliance Mode	Execution	Comments
	Standby MHL Positive Output Voltage at VTerm(Min)	N.A.	3.135 V	>= -0.01	0.0000	<= 0.01	0.01, 0.01	v				
	Standby MHL Negative Output Voltage at VTerm(Min)	N.A.	3.135 V	>= -0.01	0.0000	<= 0.01	0.01, 0.01	v				
3.1.1.1 Standby Output Voltage-VOPP	Standby MHL Positive Output Voltage at VTerm(Max)	N.A.	3.465 V	>= -0.01	0.0000	<= 0.01	0.01, 0.01	v	P'858	NO	STMD	
	Standby MHL Negative Output Voltage at VTerm(Max)	N.A.	3.465 V	>= -0.01	0.0000	<= 0.01	0.01, 0.01	v				
	Clock "litter at VTerm(Min) at 0.75 Gbps 24 Bits	1322.75 ps	3.135 V		₽ 180.5488	<= 530.6875	350.1387	ps				1] Resolution: 0.75 Gbps. VTerm(Min)- No. of Repetition: 1, Clock Jitter Population Count: 12674
	Clock Jitter at VTerm(Max) at 0.75 Gbps 24 Bits	1322.75 ps	3.465 V	•	323.0198	<= 530.6875	207.6677	ps				2] Resolution: 0.75 Gbps, VTerm(Max)- No. of Repetition: 1, Clock Jitter Population
3.1.1.11 MHL Clock Jitter in Normal Mode	Clock Jitter at VTerm(Min) at 2.22 Gbps 24 Bits	448.93 ps	3.135 V		164.4395	<= 312.2334	147.7939	ps	Pass	No	5 Min	3] Resolution: 2.22 Gbps, VTerm(Min)- No. of Repetition: 1, Clock Jitter Population
	Clock Jitter at VTerm(Max) at 2.22 Gbps 24 Bits	448.93 ps	3.465 V	•	168.6915	<= 312.2334	143.5419	ps				4] Resolution: 2.22 Gbps. VTerm(Max)- No. of Repetition: 1, Clock Jitter Population
	Clock Jitter at VTerm(Min) at 2.97 Gbps Packed Pixel	336.7 ps	3.135 V	•	214.1488	<= 235.6893	21.5405	ps				1] Resolution: 0.75 Gbps, VTerm(Min)- No. of Repetition: 1, Clock Jitter Population
3.1.1.15 MHL Clock Jitter in PackedPixel Mode	Clock Jitter at VTerm(Max) at 2.97 Gbps Packed Pixel	336.7 ps	3.465 V	÷	210.3922	<= 235.6893	25.2971	ps	Pass	No	4 Min	Count: 37049 2] Resolution: 0.75 Gbps. VTerm(Max)- No. of Repetition: 1, Clock Jitter Population Count: 37049
Clock Jitter at VTe	erm(Min) at 0.75 Gbps 24 Bits, TBit 1322.75 ps											journ. arona

- Setting Up Tests: the Setup Panel (see page 47)
- Running the Tests and Viewing their Progress: the Status Panel (see page 89)
- Viewing Test Results: the Results Panel (see page 95)
- About Saving and Recalling Test Setups (see page 101)

	· · · ·	Opti	ions V	
Report Name		Browse	Start	
Save As Type	Web Archive (*.mht;*.mhtml)			
tus 🔲 🔲 Auto incre	ment report name if duplicate		Dauea	
ults			- Conse	
Contents T	o Save			
include Us	er Comments			
Annend Br	norts			
	Porto			
			-	
View Repo	rt After Generating View			
About Saving and Recalling Test Setups

TekExpress MHL opens with the default test setup selected. Any time you want to create a new test setup, you can select the default test setup to clear the previous test setup selections and take the settings back to their defaults.

You can run a test before or after saving a setup. When you save a setup, the selected oscilloscope, general parameters, acquisition parameters, measurement limits, prerecorded waveform files (if applicable), test, and other configuration settings are all saved under the setup name. You can open a setup and click **Start** without having to do any other setting up except ensuring that the oscilloscope is detected and ready. For details, see Before You Click Start (see page 85).

See Also

- Save a Test Setup (see page 101)
- Recall a Saved Test Setup (see page 102)
- Create a New Test Setup Based on an Existing One (see page 102)
- Delete a Test Setup (see page 103)
- Setting Up Tests: the Setup Panel (see page 47)

Saving a Test Setup

Save a test setup before or after running a test using the parameters you want saved. You can create a new setup from any setup you have open or from the default setup. When you select the default test setup, all parameters are returned to their defaults. The following instructions start from the default setup:

- 1. From the Options menu, select Default Test Setup.
- 2. Select the desired options in the <u>Setup panel</u>. (see page 47)
- 3. Select the desired report options (see page 97).
- 4. If desired, run the test to ensure that it captures the information you want. If it does not, edit the parameters.
- 5. From the Options menu, select Save Test Setup.
- 6. Name the test and then click Save.

See Also

- About Test Setups (see page 101)
- Recall a Saved Test Setup (see page 102)

- Create a New Test Setup Based on an Existing One (see page 102)
- Delete a Test Setup (see page 103)

Recalling a Saved Test Setup

These instructions are for recalling saved test setups.

- 1. From the **Options** menu, select **Open Test Setup**.
- 2. In the File Open dialog box, select the desired setup from the list and then click Open.
- About Test Setups (see page 101)
- Save a Test Setup (see page 101)
- Create a New Test Setup Based on an Existing One (see page 102)
- Delete a Test Setup (see page 103)

Creating a New Test Setup Based on an Existing One

Use this method to create a variation on a test setup without having to create the setup from the beginning.

- 1. From the Options menu, select Open Test Setup.
- 2. In the File Open dialog box, select the desired setup from the list and then click Open.
- 3. Modify the parameters as desired.
- 4. From the Options menu, select Save Test Setup As.
- 5. In the File Save As dialog box, enter a test setup name and then click Save.
- About Test Setups (see page 101)
- Save a Test Setup (see page 101)
- Recall a Saved Test Setup (see page 102)
- Delete a Test Setup (see page 103)

Deleting a Test Setup

If you no longer need a test setup, delete it from the test setup list in the Options menu using these instructions.

Each saved test setup consists of two main parts, the test setup file and the test setup folder, both named for the test session.

- 1. Make sure the setup you want to delete is not currently selected in TekExpress MHL.
- 2. Navigate to the MHL folder where test setup files are stored. For example, X:\MHL\(test setup name).
- 3. Locate the test setup file and then delete it. This removes the setup from the list in the **Options** menu.
- **4.** Locate the test setup folder. If you want to keep any of the session files, move them out of the test setup folder and then delete the test setup folder.
- About Test Setups (see page 101)
- Save a Test Setup (see page 101)
- Recall a Saved Test Setup (see page 102)
- Create a New Test Setup Based on an Existing One (see page 102)

About the Programmatic Interface

The Programmatic interface allows you to seamlessly integrate the TekExpress test automation application with the high-level automation layer. This also allows you to control the state of the TekExpress application running on a local or a remote computer.

For simplifying the descriptions, the following terminologies are used in this section:

- TekExpress Client: A high-level automation application that communicates with TekExpress using TekExpress Programmatic Interface.
- **TekExpress Server:** The TekExpress application when being controlled by TekExpress Client.

TekExpress leverages .Net Marshalling to enable the Programmatic Interface for TekExpress Client. TekExpress provides a client library for TekExpress clients to use the programmatic interface. The TekExpress client library is inherited from .Net MarshalByRef class to provide the proxy object for the clients. The TekExpress client library maintains a reference to the TekExpress Server and this reference allows the client to control the server state.

See Also

- Requirements for Developing TekExpress Client (see page 105)
- Remote Proxy Object (see page 107)
- Client Proxy Object (see page 107)

Requirements for Developing TekExpress Client

While developing TekExpress Client, use the TekExpressClient.dll. The client can be a VB .Net, C# .Net, TestStand or Web application. The examples for interfaces in each of these applications are in the Samples folder.

References Required

- TekExpressClient.dll has an internal reference to IIdlglib.dll and IRemoteInterface.dll.
- *IIdlglib.dll* has a reference to *TekDotNetLib.dll*.
- *IRemoteInterface.dll* provides the interfaces required to perform the remote automations. It is an interface that forms the communication line between the server and the client.
- *IIdlglib.dll* provides the methods to generate and direct the secondary dialog messages at the client-end.

NOTE. The end-user client application does not need any reference to the above mentioned DLL files. It is essential to have these DLLs (IRemoteInterface.dll, IIdlglib.dll and TekDotNetLib.dll) in the same folder as that of TekExpressClient.dll.

Required Steps for a Client

The following are the steps that a client needs to follow to use TekExpressClient.dll to programmatically control the server:

A client UI must be developed to access the interfaces exposed through the server. This client needs to load TekExpressClient.dll to access the interfaces. After TekExpressClient.dll is loaded, the client UI can call the specific functions to run the operations requested by the client. When the client is up and running, it must do the following to run a remote operation:

- 1. The client needs to provide the IP address of the PC at which the server is running in order to connect to the server.
- 2. The client needs to lock the server application to avoid conflict with any other Client that may try to control the server simultaneously. "Lock" would also disable all user controls on the server so that server state cannot be changed by manual operation. Note that this does not lock the UI.

If any other client tries to access a server that is locked, it will get a notification that the server is locked by another client.

- **3.** When the client has connected to and locked the server, the client can access any of the programmatic controls to run the remote automations.
- 4. After the client operations are completed, the server needs to be unlocked by the client.

See Also

About MHL Application Commands (see page 116)

Remote Proxy Object

The server exposes a remote object to let the remote client access and perform the server side operations remotely. The proxy object is instantiated and exposed at the server-end through marshalling.

The following is an example:

RemotingConfiguration.RegisterWellKnownServiceType (typeof (TekExpressRemoteInterface), "TekExpress Remote interface", WellKnownObjectMode.Singleton);

This object lets the remote client access the interfaces exposed at the server side. The client gets the reference to this object when the client gets connected to the server.

For example,

//Get a reference to the remote object

```
remoteObject = (IRemoteInterface)Activator.GetObject(typeof(IRemoteInterface),
URL.ToString());
```

Client Proxy Object

Client exposes a proxy object to receive certain information.

For example,

//Register the client proxy object

```
WellKnownServiceTypeEntry[] e = RemotingConfiguration.GetRegisteredWell-
KnownServiceTypes();
```

```
clientInterface = new ClientInterface();
```

```
RemotingConfiguration.RegisterWellKnownServiceType(typeof(ClientInterface),
"Remote Client Interface", WellKnownObjectMode.Singleton);
```

//Expose the client proxy object through marshalling

RemotingServices.Marshal(clientInterface, "Remote Client Inteface");

The client proxy object is used for the following:

- To get the secondary dialog messages from the server.
- To get the file transfer commands from the server while transferring the report.

Examples

```
clientObject.clientIntf.DisplayDialog(caption, msg,iconType, btnType);
```

```
clientObject.clientIntf.TransferBytes(buffer, read, fileLength);
```

For more information, click the topic links listed below.

Secondary Dialog Message Handling

The secondary dialog messages from the Secondary Dialog library are redirected to the client-end when a client is performing the automations at the remote end.

In the secondary dialog library, the assembly that is calling for the dialog box to be displayed is checked and if a remote connection is detected, the messages are directed to the remote end.

File Transfer Events

When the client requests the transfer of the report, the server reads the report and transfers the file by calling the file transfer methods at the client-end.

Client Programmatic Interface Example

An example of the client programmatic interface is described and shown as follows:

- 1. Connect to a server or remote object using the programmatic interface provided.
- 2. Get the client ID that is created when connecting to the remote object. This client ID is one of the required parameters to communicate with the server.

NOTE. Server identifies the client with this ID only and rejects any request if the ID is invalid.

3. Lock the server for further operations. This disables the application interface.

NOTE. You can get values from the server or set values from the server to the client only if the application is locked.

4. Register for receiving notifications on status change events on the server. To register you need to give a handler as a parameter.

NOTE. Whenever there is a change in the status of the server, all the clients registered with the server receive a notification from the server.

- 5. Select the tests that you want to run through the programmatic interface.
- 6. Set the necessary parameters for each test.
- 7. Run the tests.
- 8. Poll for the status of the application.

NOTE. Skip this step if you are registered for the status change notification and when the status is Ready.

- 9. After completing the tests, get the results.
- 10. Create a report or display the results and verify or process the results.
- 11. Unlock the server after you complete all the tasks.
- **12.** Disconnect from the remote object.

Handler of Status Change Notification

- 1. Get the status. If the status is Wait or Error, get the information that contains the title, message description, and the expected responses for the status.
- 2. Perform the actions based on the status information.
- **3.** Set the response as expected.

See Also

- About MHL Application Commands (see page 116)
- Program Example (see page 112)

Program Example

This program example shows how to communicate between a PC and TekExpress MHL remotely, using typical steps.

For detailed information about each command, see MHL Application Commands (see page 116) section.

- 1. Start the application.
- 2. Connect through an IP address.

```
{'Set String Details
```

string devicename = "MHL Physical Layer Solution"

string suitename = "MHL Transmitter"

m_Client.Connect("localhost")'True or False

clientID = m_Client.getClientID }

3. Lock the server.

m_Client.LockServer(clientID)

4. Disable the Popups.

m_Client.SetVerboseMode(clientID, False)

5. Set the Dut ID.

m_Client.SetDutId(clientID, "DUT_Name")

6. Set Pixel Mode.

m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"Pixel Mode\$24 Bits");

7. Set Resolutions.

m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"24Bits Lowest Resolution (MHz)\$25");

m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"24Bits Highest Resolution (MHz)\$74.25");

m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"24Bits Number of Other Resolution (Count)\$0");

8. Select Voltage Termination Method.

m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"Voltage termination\$Internal");

9. Set Voltage.

m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"VTerm1 (V)\$3.1");

m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"VTerm2 (V)\$3.5");

10. Select a measurement.

m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.12 MHL Data Eye
Diagram", True)

11. Select channels.

m_Client.SetGeneralParameter(clientID, devicename, suitename, String.Empty, "P7313SMA Diff mode / MHL Positive Connected to\$CH1");

m_Client.SetGeneralParameter(clientID, devicename, suitename, String.Empty, "P7313SMA MHL Negative Connected to\$CH2");

m_Client.SetGeneralParameter(clientID, devicename, suitename, String.Empty,"P7240 Common Mode Connected to\$CH3");

12. Configure the selected measurement(Acquire Parameters).

m_client.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Sample Rate (GS/s)\$25")

m_client.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Record Length (M)\$12.5")

m_client.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Edge trigger level (%)\$50")

m_client.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Probe attenuation (X)\$12.5")

m_client.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Diff Probe Vertical Position (Div)\$0")

m_client.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Diff Probe Vertical Scale (mV/Div)\$125")

m_client.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$CM Probe Vertical Position (Div)\$0") m_client.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$CM Probe Vertical Scale (mV/Div)\$80")

13. Configure the selected measurement(Analyze Parameters).

m_client.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference levels\$Absolute")

m_client.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference Level - Mid Level (%)\$2")

m_client.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference Level - Hysteresis (%)\$1")

m_client.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","PLL model type\$2")

m_client.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock recovery method\$PLL-Custom BW")

m_client.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock Multiplier\$15")

m_client.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Loop bandwidth (MHz)\$4")

m_client.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock Edge\$RISE")

14. Run with set configurations.

m_Client.Run(clientID)

15. Wait for the test to complete.

DO

Thread.Sleep(500)

m_Client.Application_Status(clientID)

Select Case status

Case "Wait"

'Get the Current State Information

mClient.GetCurrentStateInfo(clientID, WaitingMsbBxCaption, WaitingMsbBxMessage, WaitingMsbBxButtontexts)

'Send the Response

```
mClient.SendResponse(clientID, WaitingMsbBxCaption, WaitingMsbBxMessage,
WaitingMsbBxResponse)
```

End Select

Loop Until status = "Ready"

16. After the test is complete:

'Save all results values from folder for current run m_Client.TransferResult(clientID, logDirname) 'Save all waveforms from folder for current run m_Client.TransferWaveforms(clientID, logDirname) 'Save all images from folder for current run m_Client.TransferImages(clientID, logDirname)

17. Unlock the server.

m_Client.UnlockServer(clientID)

18. Disconnect from the server.

m_Client.Disconnect()

19. Exit the application.

NI TestStand Client Example

The following is an example for NI TestStand Client available in the path: C:\Program Files\Tektronix\TekExpress\TekExpress MHL\Examples\Programmatic Interface\TestStand

TestStand - Sequence Editor [Edit] - [C:\\Examples\Programmatic Interface\TestStand\TekExpressClientTS.seq [Read Only]]				
📰 File Edit View Execute Debug Configure Source Control Tools Window Help				
D 🛱 🖬 👗 📬 🛍 💈 🚺 😫 🕀 🖓	🗊 *{}	💩 11: 11: 🐻	Ú	
Main Setup Cleanup Parameters Locals	View:	MainSequence		
Step	Description	Flow Properties Requirements	Comment	
Connect	Action. Create TekExpressClient.Client: Call Te		Connect to the ser	
Lock the sever so that other client object will have rea	·····, -····, -····, -···, -···			
III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIII	"Locking server"			
1 LockServer	Action, Call TekExpressClient.Client.LockServer		Lock Server to bloc	
Demonstrating - Time Out feature of the client				
Get TimePeriod	Action, Get TekExpressClient.Client.TimeOut		Gets the Time Out	
Show default time out	"Default timeout"			
Now setting user specified timeout	"Setting user specified timeout"			
Set TimePeriod	Action, Call TekExpressClient.Client.SetTimeOut		Sets the Time-out	
🛛 🔀 Wait	TimeInterval(Parameters.TimeOut + 2)		Wait for the time p	
Notice the change in UI after lock timesout	"Timeout"			
📩 Time Period Elapsed - Server unlocked. Lock server to				
📩 Need to lock the server again since it timed out				
	Action, Call TekExpressClient.Client.LockServer		Lock Server to bloc	
Set TimePeriod	Action, Call TekExpressClient.Client.SetTimeOut		Sets the Time-out	
🕺 Demonstrating Save/Recall Session				
CetDUTID CETTING	Action, Call TekExpressClient.Client.GetDutId		Checking if DUT-id	
Show default DUT ID	"DUT ID"			
	Action, Call TekExpressClient.Client.SetDutId		Change the DUT id	
SaveSession	Action, Call TekExpressClient.Client.SaveSession		Saves the current	
Notice the saved session	"Session save"			
SaveSessionAs	Action, Call TekExpressClient.Client.SaveSessio		Saves the current	
Notice the saved As	"Session save"			
RecallSession	Action, Call TekExpressClient.Client.RecallSession		Recall the saved s	
Notice the recalled session	"Session save"			
📩 Demonstrating Run, Query results and Transfer results				
题 Run stop demo	"Run/Stop"			
1 WRun	Action, Call TekExpressClient.Client.Run		Run TekExpress re	
📓 Wait	TimeInterval(30)		Wait for the run to	
🚺 🚺 Stop	Action, Call TekExpressClient.Client.Stop		Transfer the repor	
Demo ends	"Demo ends"			
1 Disconnect	Action, Call TekExpressClient.Client.Disconnect		Disconnect the Ser	
<end group=""></end>				

About TekExpress MHL Application Commands

Click a client action below to see the command name, description, parameters, return value, and an example, associated with the action.

Connect through an IP address (see page 122)

Lock the server (see page 123)

Disable the popups (see page 124)

Set or get the DUT ID (see page 125)

Set the configuration parameters for a suite or measurement (see page 126)

Query the configuration parameters for a suite or measurement (see page 129)

Select a measurement (see page 131)

Select a suite (see page 138)

Set Pixel Mode (see page 138)

Set Resolution (see page 139)

Set Termination Source Method (see page 141)

Set Termination Voltage (see page 142)

Run with set configurations or stop the run operation (see page 143)

Handle Error Codes (see page 144)

Get or set the timeout value (see page 145)

Wait for the test to complete (see page 145)

After the test is complete (see page 148)

Save, recall, or check if a session is saved (see page 151)

Unlock the server (see page 152)

Disconnect from server (see page 152)

string id						
Name	Туре	Direction	Description			
id	string	IN	Identifier of the client performing the remote function.			
Ready: Test configured and ready to start						
Running: Test running						
Paused: Test paused						
Wait: A po	Wait: A popup that needs your inputs					
Error: An	error has occurred					

string dutNa	me		
Name	Туре	Direction	Description
dutName	string	IN	The new DUT ID of the setup

out bool sav	red		
Name	Туре	Direction	Description
saved	bool	OUT	Boolean representing whether the current session is saved

This parameter is used as a check in SaveSession() and SaveSessionAs() functions.

string ipAd	dress		
Name	Туре	Direction	Description
ipAddress	string	IN	The ip address of the server to which the client is trying to connect to. This is required to establish the connection between the server and the client.
out string c	lientID		
Name	Туре	Direction	Description
clientID	string	OUT	Identifier of the client that is connected to the server
			clientID = unique number + ipaddress of the client. For example, 1065–192.157.98.70

NOTE. If the dutName parameter is null, the client is prompted to provide a valid DUT ID.

NOTE. The server must be active and running for the client to connect to the server. Any number of clients can be connected to the server at a time.

NOTE. When the client is disconnected, it is unlocked from the server and then disconnected. The id is reused.

string dutld			
Name	Туре	Direction	Description
dutld	string	OUT	The DUT ID of the setup

string device			
Name	Туре	Direction	Description
device	string	IN	Specifies the name of the device
string suite			
Name	Туре	Direction	Description
suite	string	IN	Specifies the name of the suite
string test			
Name	Туре	Direction	Description
test	string	IN	Specifies the name of the test to obtain the pass or fail status
string paramete	erString		
Name	Туре	Direction	Description
parameterString	string	IN	Selects or deselects a test
int rowNr			
Name	Туре	Direction	Description
rowNr	int	IN	Specifies the zero based row index of the sub-measurement for obtaining the result value

NOTE. When the client tries to lock a server that is locked by another client, the client gets a notification that the server is already locked and it must wait until the server is unlocked. If the client locks the server and is idle for a certain amount of time then the server is unlocked automatically from that client.

out string[] sta	itus		
lame	Туре	Direction	Description
tatus	string array	OUT	The list of status messages generated during run
	string array	OUT	I he list of status messages gen during run

string name			
Name	Туре	Direction	Description
name	string	IN	The name of the session being recalled

The name parameter cannot be empty. If it is empty, the client is prompted to provide a valid name.

NOTE. When the run is performed, the status of the run is updated periodically using a timer.

string name			
Name	Туре	Direction	Description
name	string	IN	The name of the session being saved

The name parameter cannot be empty. If it is empty, the client is prompted to provide a valid name.

Once the session is saved under 'name' you cannot use this method to save the session in a different name. Use SaveSessionAs instead.

string name			
Name	Туре	Direction	Description
name	string	IN	The name of the session being recalled

The same session is saved under different names using this method. The name parameter cannot be empty. If it is empty, the client is prompted to provide a valid name.

bool isSelect	ed		
Name	Туре	Direction	Description
isSelected	bool	IN	Selects or deselects a test

string time			
Name	Туре	Direction	Description
time	string	IN	The time in seconds that refers to the timeout period

The time parameter gives the timeout period, which is the time the client is allowed to be locked and idle. After the timeout period, if the client is still idle, it gets unlocked.

The time parameter should be a positive integer. Else, the client is prompted to provide a valid timeout period.

bool_verbose	9		
Name	Туре	Direction	Description
_verbose	bool	IN	Specifies whether the verbose mode should be turned ON or OFF

NOTE. When the session is stopped, the client is prompted to stop the session and is stopped at the consent.

Name Type Direction Description filePath string IN The location where the report mube saved in the client	string filePa	th		
filePath string IN The location where the report mube saved in the client	Name	Туре	Direction	Description
	filePath	string	IN	The location where the report must be saved in the client
NOTE If the client does not provide the location to save the report the report is saved at	NOTE If the	client does not provid	e the location to save the	e report the report is saved at

NOTE. When the client is disconnected, the client is automatically unlocked.

out string	caption		
Name	Туре	Direction	Description
caption	string	OUT	The wait state or error state message sent to you

out string me	essage			
Name	Туре	Direction	Description	
message	string	OUT	The wait state/error state message to you	
out string[] b	outtonTexts			
Name	Туре	Direction	Description	
buttonTexts	string array	OUT	An array of strings containing the possible response types that you can send	
string respo	nse			
Name	Туре	Direction	Description	
response	string	IN	A string containing the response type that you can select (it must be one of the strings in the string array buttonTexts)	

Connect Through an IP Address

Command name	Parameters	Description	Return value	Example
Connect()	string ipAddress (see page 118) out string clientID (see page 118)	This method connects the client to the server. <u>Note (see page 118)</u> The client provides the IP address to connect to the server. The server provides a unique client identification number when connected to it.	Return value is either True or False.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as boolean returnval = m_Client.Con- nect(ipaddress,m_clientID)</pre>

NOTE. The Fail condition for PI commands occurs in any of the following cases: The server is LOCKED and the message displayed is "Server is locked by another client". The session is UNLOCKED and the message displayed is "Lock Session to execute the command". The server is NOTFOUND and the message displayed is "Server not found...Disconnect!". When none of these fail conditions occur, then the message displayed is "Failed...".

Lock the Server

NOTE. This method does not lock the UI, but you need this method to set the value that gives the status of the operation after it has been performed.

LockSession() out string clientID (see page 118) This method locks the server. String value that gives the status of the operation after it has been performed. m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. This method locks String value that gives the status of the operation after it has been performed. m_Client = new Client()	Command name	Parameters	Description	Return value	Example
any of the remote Locked" on automations. The success. server can be locked by only one client.	LockSession()	out string clientID (see page 118)	This method locks the server. <u>Note (see</u> <u>page 119)</u> The client must call this method before running any of the remote automations. The server can be locked by only one client.	String value that gives the status of the operation after it has been performed. The return value is "Session Locked" on success.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval = m_Client.LockServer(clientID)</pre>

NOTE. The Fail condition for PI commands occurs in any of the following cases: The server is LOCKED and the message displayed is "Server is locked by another client". The session is UNLOCKED and the message displayed is "Lock Session to execute the command". The server is NOTFOUND and the message displayed is "Server not found...Disconnect!". When none of these fail conditions occur, then the message displayed is "Failed...".

Disable the Popups

Command name	Parameters	Description	Return value	Example
SetVerboseMode()	string clientID (see page 118) bool _verbose (see page 121)	This method sets the verbose mode to either True or False. When the value is set to True, any of the message boxes appearing during the application run will be routed to the client machine that is controlling TekExpress. When the value is set to False, then all the message boxes are shown on the server machine.	String that displays the status of the operation after it has been performed. When Verbose mode is set to True, the return value is "Verbose mode turned on. All dialog boxes will be shown to client". When Verbose mode is set to False, the return value is "Verbose mode is set to False, the return value is "Verbose mode turned off. All dialog boxes will be shown to server".	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string Verbose mode is turned on return=m_Client.SetVerbose- Mode(clientID, True) Verbose mode is turned off returnval=m_Client.SetVerbose- Mode(clientID, False)</pre>

NOTE. The Fail condition for PI commands occurs in any of the following cases: The server is LOCKED and the message displayed is "Server is locked by another client". The session is UNLOCKED and the message displayed is "Lock Session to execute the command". The server is NOTFOUND and the message displayed is "Server not found...Disconnect!". When none of these fail conditions occur, then the message displayed is "Failed...".

Set or Get the DUT ID

Command name	Parameters	Description	Return value	Example
SetDutId()	string clientID (see page 118) string dutName (see page 117)	This method changes the DUT ID of the setup. The client must provide a valid DUT ID.	String that gives the status of the operation after it has been performed. Return value is "DUT Id Changed" on success.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string return=m_Client.SetDutId(clien- tID,desiredDutId) Note (see page 118)
GetDutId()	string clientID (see page 118) string dutId (see page 118)	This method gets the DUT ID of the current set up.	String that gives the status of the operation after it has been performed.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string return=m_Client.GetDutid(clien- tID, out DutId)

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

When none of these fail conditions occur, then the message displayed is "Failed...".

Set the Configuration Parameters for a Suite or Measurement

Command name	Parameters	Description	Return value	Example
SetGeneralParam- eter	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method sets the general parameters.	String that displays the status of the operation after it has been performed. The return value is "" (an empty String) on success.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval = m_Client.SetGen- eralParameter(clientID, device- name, suitename, string.Empty, parameterstring); SetGeneralParameters Examples (see page 128)</pre>
SetAnalyzeParam- eter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method sets the parameter values in the Ref Levels and Clock Settings tabs in the test configuration section.	String that displays the status of the operation after it has been performed. The return value is "" (an empty String) on success.	mClient = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Select Analyze parameter: returnval = mClient.SetAn- alyzeParameter(clientID, devicename, suitename, test, parameterstring) <u>SetAnalyzeParameter</u> <u>Examples (see page 127)</u>
SetAcquireParame- ter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method sets the parameter values in the Vertical Setup and the Scope Settings tabs in the test configuration section.	String that displays the status of the operation after it has been performed. The return value is " (an empty string) on success.	mClient = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Set Acquire Parameter: return- val = mClient.SetAcquirePa- rameter(clientID, devicename, suitename, test, parameter- string) <u>SetAcquireParameter Example</u> (see page 128)

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

When none of these fail conditions occur, then the message displayed is "Failed...".

SetAnalyzeParameter Examples

This example uses MHL test 3.1.1.12 MHL Data Eye Diagram.

Parameter	Example
Reference Level	returnval =mClient.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference levels\$Absolute")
Mid Level	returnval =mClient.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference Level - Mid Level (%)\$2")
Hysteresis	returnval =mClient.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference Level - Hysteresis (%)\$1")
PLL Model Type	returnval =mClient.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","PLL model type\$2")
Clock Recovery Method	returnval =mClient.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock recovery method\$PLL-Custom BW")
Clock Multiplier	returnval =mClient.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock Multiplier\$15")
Loop bandwidth	returnval =mClient.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Loop bandwidth (MHz)\$4")
Clock Edge	returnval =mClient.SetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock Edge\$RISE")

SetAcquireParameter Examples

This configuration example uses MHL test 3.1.1.12 MHL Data Eye Diagram.

Parameter	Example
Sample Rate (GS/s)	returnval = mClient.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Sample Rate (GS/s)\$25")
Record Length	returnval = mClient.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Record Length (M)\$12.5")
Edge Trigger	returnval = mClient.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Edge trigger level (%)\$50")
Probe Attenuation	returnval = mClient.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Probe attenuation (X)\$12.5")
Diff Vertical Position	returnval = mClient.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Diff Probe Vertical Position (Div)\$0")
Diff Vertical Scale	returnval = mClient.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Diff Probe Vertical Scale (mV/Div)\$125")
CM Vertical Position	returnval = mClient.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$CM Probe Vertical Position (Div)\$0")
CM Vertical Scale	returnval = mClient.SetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$CM Probe Vertical Scale (mV/Div)\$80")

SetGeneralParameter Examples

returnval = mClient.SetGeneralParameter(clientID,devicename, suitename, String.Empty, "P7313SMA Diff mode / MHL Positive Connected to\$CH1");

returnval = mClient.SetGeneralParameter(clientID, devicename, suitename, String.Empty, "P7313SMA MHL Negative Connected to\$CH2");

returnval = mClient.SetGeneralParameter(clientID, devicename, suitename, String.Empty,"P7240 Common Mode Connected to\$CH3");

Query the Configuration Parameters for a Suite or Measurement

Command name	Parameters	Description	Return value	Example
GetGeneralParam- eter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method gets the general configuration parameters for a given suite or measurement.	The return value is the general configuration parameter for a given suite or measurement that is set.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string
GetAnalyzeParam- eter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method queries the parameter values in the Ref Level and Clock Settings tabs in the test configuration section.	The return value is the configuration parameter for a given suite or measurement.	mClient = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Get Analyze parameter: return- val = mClient.GetAnalyzePa- rameter(clientID, devicename, suitename, test, parameter- string) <u>GetAnalyzeParameter</u> <u>Examples (see page 131)</u>
GetAcquireParame- ter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method queries the parameter values in the Vertical Setup and Scope Settings tabs in the test configuration section.	The return value is the configuration parameter for a given suite or measurement.	mClient = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Get Acquire Parameter: return- val = mClient.GetAcquirePa- rameter(clientID, devicename, suitename, test, parameter- string) <u>GetAcquireParameter Examples</u> (see page 130)

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

When none of these fail conditions occur, then the message displayed is "Failed...".

Parameter	Example
Sample Rate (GS/s)	returnval = mClient.GetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Sample Rate (GS/s)")
Record Length	returnval = mClient.GetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Record Length (M)")
Edge Trigger	returnval = mClient.GetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Edge trigger level (%)")
Probe Attenuation	returnval = mClient.GetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Probe attenuation (X)")
Diff Prove Vertical Position	returnval = mClient.GetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Diff Probe Vertical Position (Div)")
Diff Probe Vertical Scale	returnval = mClient.GetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$Diff Probe Vertical Scale (mV/Div)")
CM Probe Vertical Position	returnval = mClient.GetAcquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$CM Probe Vertical Position (Div)")
CM Probe Vertical Scale	returnval = mClient.GetAquireParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Short Record-length for DPOJET\$CM Probe Vertical Scale (mV/Div)")

GetAnalyzeParameter Examples

This example uses MHL test 3.1.1.12 MHL Data Eye Diagram.

Parameter	Example
Reference Level	returnval =mClient.GetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference levels")
Mid Level	returnval =mClient.GetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference Level - Mid Level (%)")
Hysteresis	returnval =mClient.GetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Reference Level - Hysteresis (%)")
PLL Model Type	returnval =mClient.GetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","PLL model type")
Clock Recovery Method	returnval =mClient.GetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock recovery method")
Clock Multiplier	returnval =mClient.GetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock Multiplier")
Loop Bandwidth	returnval =mClient.GetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Loop bandwidth (MHz)")
Clock Edge	returnval =mClient.GetAnalyzeParameter(clientID, devicename, suitename,"3.1.1.12 MHL Data Eye Diagram","Clock Edge")

Select a Measurement

Command name	Parameters	Description	Return value	Example
SelectTest()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) bool isSelected (see page 120)	This method selects or deselects a given test.	String that displays the status of the operation after it has been performed. The return value is "" (an empty String) on success.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Select test: (test name) returnval=mClient.Se- lectTest(clientID, devicename, suitename, testname, isSe- lected);) Select a specific test.</pre>

Select a Specific Test

Test	Command
3.1.1.1 Standby Output Voltage — VOFF	For selecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.1 Standby Output Voltage-VOFF", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.1 Standby Output Voltage-VOFF", False)
3.1.1.2 Single-ended High Level	For selecting the test:
Voltage — VSE_HIGH	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.2 Single-ended High Level Voltage-VSE_HIGH", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.2 Single-ended High Level Voltage-VSE_HIGH", False);
3.1.1.3 Single-ended Low Level Voltages — VSE_LOW	For selecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.3 Single-ended Low Level Voltages- VSE_LOW", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.3 Single-ended Low Level Voltages- VSE_LOW", False);
3.1.1.4 Differential Output Swing	For selecting the test:
Voltage — VDF_SWING	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.4 Differential Output Swing Voltage-VDF_SWING", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.4 Differential Output Swing Voltage-VDF_SWING", False);
3.1.1.5 Common-mode Output Swing Voltage — V_CMSWING	For selecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.5 Common-mode Output Swing Voltage-V_CMSWING", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.5 Common-mode Output Swing Voltage-V_CMSWING", False);

Test	Command
3.1.1.6 Differential Rise and Fall Times-TR_DF, TF_DF	For selecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.6 Differential Rise and Fall Times-TR_DF, TF_DF", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.6 Differential Rise and Fall Times-TR_DF, TF_DF", False);
3.1.1.7 Common-mode Rise and	For selecting the test:
Fall Times — TR_CM, TF_CM	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.7 Common-mode Rise and Fall Times-TR_CM, TF_CM", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.7 Common-mode Rise and Fall Times-TR_CM, TF_CM", False);
3.1.1.8 Differential Intra-Pair Skew	For selecting the test:
-TSKEW_DF	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.8 Differential Intra-Pair Skew-TSKEW_DF", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.8 Differential Intra-Pair Skew-TSKEW_DF", False);
3.1.1.10 MHL Clock Duty Cycle -	For selecting the test:
24 Bit or Packed Pixel (CTS 1.X)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.10 MHL Clock Duty Cycle 24-Bit or Packed Pixel Mode", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.10 MHL Clock Duty Cycle 24-Bit or Packed Pixel Mode", False);
3.1.1.10 MHL Clock Duty Cycle – Normal Mode (CTS 2.0)	For selecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.10 MHL Clock Duty Cycle Normal Mode", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.10 MHL Clock Duty Cycle Normal Mode", False);

Test	Command		
3.1.1.11 MHL Clock Jitter (CTS	For selecting the test:		
1.X)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.11 MHL Clock Jitter", True);		
	For deselecting the test:		
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.11 MHL Clock Jitter", False);		
3.1.1.11 MHL Clock Jitter – Normal	For selecting the test:		
Mode (CTS 2.0)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.11 MHL Clock Jitter Normal Mode", True);		
	For deselecting the test:		
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.11 MHL Clock Jitter Normal Mode", False);		
3.1.1.12 MHL Data Eye Diagram	For selecting the test:		
(CTS 1.X)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.12 MHL Data Eye Diagram", True);		
	For deselecting the test:		
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.12 MHL Data Eye Diagram", False);		
3.1.1.12 MHL Data Eye Diagram	For selecting the test:		
Normal Mode (CTS 2.0)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.12 MHL Data Eye Diagram Normal Mode", True);		
	For deselecting the test:		
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.12 MHL Data Eye Diagram Normal Mode", False);		
3.1.1.14 MHL Clock Duty Cycle –	For selecting the test:		
Packed Pixel Mode (CTS 2.0)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.14 MHL Clock Duty Cycle Packed Pixel Mode", True);		
	For deselecting the test:		
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.14 MHL Clock Duty Cycle Packed Pixel Mode", False);		
3.1.1.15 MHL Clock Jitter – Packed	For selecting the test:		
Pixel Mode (CTS 2.0)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.15 MHL Clock Jitter Packed Pixel Mode", True);		
	For deselecting the test:		
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.15 MHL Clock Jitter Packed Pixel Mode", False);		

Test	Command
3.1.1.16 MHL Data Eye Diagram –	For selecting the test:
Packed Pixel Mode (CTS 2.0)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.16 MHL Data Eye Diagram Packed Pixel Mode", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "3.1.1.16 MHL Data Eye Diagram Packed Pixel Mode", False);
4.1.1.1. Input Signal DC Voltage	For selecting the test:
Level Iolerance Test	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.1 Input Signal DC Voltage Level Tolerance", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.1 Input Signal DC Voltage Level Tolerance", False);
4.1.1.2 Input Signal Minimum	For selecting the test:
and Maximum Swing Voltages Tolerance	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.2 Input Signal Minimum and Maximum Swing Voltages Tolerance", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.2 Input Signal Minimum and Maximum Swing Voltages Tolerance", False);
4.1.1.3 Intra-Pair Skew Tolerance	For selecting the test:
Test	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.3 Intra-Pair Skew Tolerance", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.3 Intra-Pair Skew Tolerance", False);
4.1.1.4 Jitter Tolerance Test (CTS	For selecting the test:
1.X)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.4 Jitter Tolerance", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.4 Jitter Tolerance", False);
4.1.1.4 Jitter Tolerance in Normal	For selecting the test:
Mode Test (CTS 2.0)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.4 Jitter Tolerance Normal Mode", True);
	For deselecting the test:
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.4 Jitter Tolerance Normal Mode", False);

Test	Command			
4.1.1.8 Jitter Tolerance in Packed Pixel Mode Test (CTS 2.0)	For selecting the test:			
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.8 Jitter Tolerance Packed Pixel Mode", True);			
	For deselecting the test:			
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "4.1.1.8 Jitter Tolerance Packed Pixel Mode", False);			
5.1.1.1 Input Signal Single-Ended	For selecting the test:			
Voltage Level Tolerance Test	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.1 Input Signal Single-Ended Voltage Level Tolerance", True);			
	For deselecting the test:			
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.1 Input Signal Single-Ended Voltage Level Tolerance", False);			
5.1.1.2 Input Signal Minimum and	For selecting the test:			
Maximum Swing Voltage Tolerance Test	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.2 Input Signal Minimum and Maximum Swing Voltages Tolerance", True);			
	For deselecting the test:			
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.2 Input Signal Minimum and Maximum Swing Voltages Tolerance", False);			
5.1.1.3 Intra-Pair Skew Tolerance	For selecting the test:			
Test	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.3 Intra-Pair Skew Tolerance", True);			
	For deselecting the test:			
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.3 Intra-Pair Skew Tolerance", False);			
5.1.1.4 Jitter Tolerance Test (CTS	For selecting the test:			
1.X)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.4 Jitter Tolerance", True);			
	For deselecting the test:			
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.4 Jitter Tolerance", False);			
Test	Command			
------------------------------------	--	--	--	--
5.1.1.4 Jitter Tolerance in Normal	For selecting the test:			
Mode Test (CTS 2.0)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.4 Jitter Tolerance Normal Mode", True);			
	For deselecting the test:			
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.4 Jitter Tolerance Normal Mode", False);			
5.1.1.9 Jitter Tolerance in Packed	For selecting the test:			
Pixel Mode Test (CTS 2.0)	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.9 Jitter Tolerance Packed Pixel Mode", True);			
	For deselecting the test:			
	returnval=m_Client.SelectTest(clientID, devicename, suitename, "5.1.1.9 Jitter Tolerance Packed Pixel Mode", False);			

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

Select a Suite

Command name	Parameters	Description	Return value	Example
SelectSuite()	string clientID (see page 118) string device (see page 119) string suite (see page 119) bool isSelected (see page 120)	This method selects or deselects a given suite. Setting parameter is selected to True, you can select a suite. Setting parameter is selected to False, you can deselect a suite.	String that gives the status of the operation after it has been performed. The return value is "" (an empty String) on success.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string Select Suite (Default): returnval=m_Client.Se- lectTest(clientID, "MHL Physical Layer Solution", "MHL Transmit- ter", True)</pre>

NOTE. The Fail condition for PI commands occurs in any of the following cases: The server is LOCKED and the message displayed is "Server is locked by another client". The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

When none of these fail conditions occur, then the message displayed is "Failed...".

Set Pixel Mode

Command name	Parameters	Description	Return value	Example
SetGeneralParame- ter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method sets the Pixel Mode for the given suite or measurement.	String that displays the status of the operation after it has been performed. The return value is "" (an empty String) on success.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Select Pixel Mode: returnval = m_Client.SetGeneralPa- rameter(clientId, devicename, suitename, string.Empty, pa- rameterstring); Set Pixel Mode to 24 Bits Example (see page 139) Set Pixel Mode to Packed Pixel Example (see page 139)</pre>

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

When none of these fail conditions occur, then the message displayed is "Failed...".

Set Pixel Mode to 24 Bits Example

```
returnval = m_Client.SetGeneralParameter(clientID, devicename, suitename,
string.Empty,"Pixel Mode$24 Bits");
```

Set Pixel Mode to Packed Pixel Example

```
returnval = m_Client.SetGeneralParameter(clientID, devicename, suitename,
string.Empty,"Pixel Mode$Packed Pixel");
```

Set Resolution

Command name	Parameters	Description	Return value	Example
SetGeneralParame- ter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method can be used to set the Low Resolution, High Resolution, or Number of Other Resolutions parameters for a given suite or measurement.	String that displays the status of the operation after it has been performed. The return value is "" (an empty String) on success.	 m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Set Resolution: returnval = m_Client.SetGeneralParam- eter(clientld, devicename, suitename, string.Empty, pa- rameterstring); Set Resolution to 24 Bits Pixel Mode Examples (see page 140) Set Resolution for Packed Pixel Mode Examples (see page 140)

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

Set Resolution to 24 Bits Pixel Mode Examples

returnval = m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"24Bits Lowest Resolution (MHz)\$25");

returnval = m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"24Bits Highest Resolution (MHz)\$74.25");

returnval = m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"24Bits Number of Other Resolution (Count)\$0");

Set Resolution for Packed Pixel Mode Examples

returnval = m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"PackedPixel Lowest Resolution (MHz)\$25");

returnval = m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"PackedPixel Highest Resolution (MHz)\$74.25");

returnval = m_Client.SetGeneralParameter(clientID, devicename, suitename, string.Empty,"PackedPixel Number of Other Resolution (Count)\$0");

Command name	Parameters	Description	Return value	Example
SetGeneralParame- ter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method sets the Type of Termination source to be used for a given suite or measurement.	String that displays the status of the operation after it has been performed. The return value is "" (an empty String) on success.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Set Termination Source Method:returnval = m_Client.SetGeneralPa- rameter(clientId, devicename, suitename, string.Empty, pa- rameterstring); Set Termination Source Method Examples (see page 141)</pre>

Set Termination Source Method

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

When none of these fail conditions occur, then the message displayed is "Failed...".

Set Termination Source Method Examples

returnval = m_Client.SetGeneralParameter(clientId, devicename, suitename, string.Empty,"Voltage termination\$Internal");

returnval = m_Client.SetGeneralParameter(clientId, devicename, suitename, string.Empty,"Voltage termination\$External Other");

returnval = m_Client.SetGeneralParameter(clientId, devicename, suitename, string.Empty,"Voltage termination\$Tek Power Supply");

Set Termination Voltage

Command name	Parameters	Description	Return value	Example
SetGeneralParame- ter()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method sets the VTerm (Min) and VTerm (Max) voltages for a given suite or measurement. The Limit is between 1V and 5V.	String that displays the status of the operation after it has been performed. The return value is "" (an empty String) on success.	 m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL returnval as string Set Termination Voltage: returnval = m_Client.SetGeneralParameter(clientld, devicename, suitename, string.Empty, parameterstring); Set Termination Voltage Examples (see page 142)

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

When none of these fail conditions occur, then the message displayed is "Failed...".

Set Termination Voltage Examples

returnval = m_Client.SetGeneralParameter(clientId, devicename, suitename, string.Empty,"VTerm1 (V)\$3.1");

returnval = m_Client.SetGeneralParameter(clientId, devicename, suitename, string.Empty,"VTerm2 (V)\$3.5");

Run with Set Configurations or Stop the Run Operation

Command name	Parameters	Description	Return value	Example
Run()	string clientID (see page 118)	Runs the selected tests. <u>Note (see</u> <u>page 120)</u> Once the server is set up and is configured, it can be run remotely using this function.	String that gives the status of the operation after it has been performed. The return value is "Run started" on success.	m_Client = new Client() //m_Clientis a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.Run(clien- tID)
Stop()	string clientID (see page 118)	Stops the currently running tests. <u>Note</u> (see page 121)	String that gives the status of the operation after it has been performed. The return value is "Stopped" on success.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.Stop(clien- tID)

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

Handle Error Codes

The return value of the remote automations at the server-end is OP_STATUS, which is changed to a string value depending on its code and returned to the client. The values of OP_STATUS are as follows:

Code	Description		
-1	The operation failed.		
1	The operation succeeded.		
2	Server not found		
3	The server is locked by another client, so the operation cannot be performed.		
4	The server is not locked. Lock the server before performing the operation.		
0	Nothing		
	Code -1 1 2 3 4 0		

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

Command name	Parameters	Description	Return value	Example
GetTimeOut()	string clientID (see page 118)	Returns the current timeout period set by the client.	String that gives the status of the operation after it has been performed. The default return value is 1800000.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.GetTime- Out()
SetTimeOut()	string clientID (see page 118) string time (see page 121)	Sets a timeout period specified by client. After expiry of this timeout period, the server is automatically unlocked.	String that gives the status of the operation after it has been performed. On success the return value is "TimeOut Period Changed".	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.SetTime- Out(clientID, desiredTimeOut)

Get or Set the Timeout Value

NOTE. The Fail condition for PI commands occurs in any of the following cases: The server is LOCKED and the message displayed is "Server is locked by another client". The session is UNLOCKED and the message displayed is "Lock Session to execute the command". The server is NOTFOUND and the message displayed is "Server not found...Disconnect!". When none of these fail conditions occur, then the message displayed is "Failed...".

Wait for the Test to Complete

The commands in this group are executed while tests are running. The GetCurrentStateInfo() and SendResponse() commands are executed when application is running and in wait state.

Command name	Parameters	Description	Return value	Example
ApplicationStatus()	string clientID (see page 118)	This method gets the status of the server application.	String value that gives the status of the server	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL.
		The states at a given	application.	returnval as string
		time are <u>Ready,</u> <u>Running, Paused,</u> <u>Wait, or Error. (see</u> page 117)		returnval=m_Client.Applica- tionStatus(clientID)
QueryStatus()	string clientID (see page 118) out string[] status (see page 119)	This is an interface for the user to transfer Analyze panel status messages from the server to the client.	String that gives the status of the operation after it has been performed. On success the return value is "Transferred".	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnVal=m_Client.QueryS- tatus(clientID, out statusMes- sages) if ((OP_STATUS)returnVal == OP_STATUS.SUCCESS)</pre>
				return "Status updated "
				else
				return CommandFailed(re- turnVal)

Command name	Parameters	Description	Return value	Example
GetCurrentState- Info() NOTE. This command is used when the application is running and is in the wait or error state.	string clientID (see page 118) out string caption (see page 121) out string message (see page 122) out string[] buttonTexts (see page 122)	This method gets the additional information of the states when the application is in Wait or Error state. Except client ID, all the others are out parameters.	This command does not return any value. This function fills up the out parameters that are passed when invoking this function.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. m_Client.GetCurrentState- Info(clientID, caption,message, buttonTexts)</pre>
SendResponse() NOTE. This command is used when the application is running and is in the wait or error state.	string clientID (see page 118) out string caption (see page 121) out string message (see page 122) string response (see page 122)	After receiving the additional informa- tion using the method GetCurrentState- Info(), the client can decide on the re- sponse to send and send the response to the application using this function. The response should be one of the strings that was earlier received as a string array in the GetCurrentState- Info function. The _caption and _mes- sage should match the information re- ceived earlier in the GetCurrentStateInfo function.	This command does not return any value.	<pre>m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. m_Client.SendResponse(cli- entID, caption,message, response)</pre>

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

After the Test is Complete

Command name	Parameters	Description	Return value	Example
GetPassFailSta- tus()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119)	This method gets the pass or fail status of the measurement after test completion. NOTE. Execute this command after completing the measurement.	String that gives the status of the operation after it has been performed. Returns the pass or fail status in the form of a string.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.GetPass- FailStatus(clientID, device, suite, "3.1.1.3 Single-ended Low Level Voltages-VSE_LOW") //Pass or Fail
GetResultsValue()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119)	This method gets the result values of the measurement after the run.	String that gives the status of the operation after it has been performed. Returns the result value in the form of a string.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as srting returnval=m_Client.GetRe- sultsValue(clientID, "MHL Physical Layer Solution", "MHL Transmitter", "3.1.1.3 Single-ended Low Level Volt- ages-VSE_LOW", "Measured Value")
GetResultsValue- ForSubMeasure- ments()	string clientID (see page 118) string device (see page 119) string suite (see page 119) string test (see page 119) string parame- terString (see page 119) int rowNr (see page 119)	This method gets the result values for individual sub- measurements, after the run.	String that gives the status of the operation after it has been performed. Returns the result value in the form of a string.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string Single-ended Low Level Voltages DP (nS) returnval=m_Client.GetRe- sultsValueForSubMeasure- ments(clientID, "MHL Physical Layer Solution", "MHL Transmit- ter", "3.1.1.3 Single-ended Low Level Voltages-VSE_LOW", "3.1.1.3 Single-ended Low Level Voltages-VSE_LOW ", "Mea- sured Value",0) //For DP wfm returnval=m_Client.GetRe- sultsValueForSubMeasure- ments(clientID, "MHL Physical Layer Solution", "MHL Transmit- ter", "3.1.1.3 Single-ended Low Level Voltages-VSE_LOW", "Measured Value",1) //For DN wfm

Command name	Parameters	Description	Return value	Example
GetReportParame- ter()	string clientID (see page 118) string device	clientID age 118)This method gets the general report details such as oscilloscope model, TekExpress version, and MHL version.119) parame- 	The return value is the oscilloscope model, TekExpress version, and MHL version.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL.
	(see page 119) string suite (see page 119) string test (see page 119)			returnval as string
				Oscilloscope Model
				returnval=m_Client.GetRe- portParameter(clientID,"Scope Model")
	string parame-			TekExpress Version
	<u>terString (see</u> page 150)			returnval=m_Client.GetReport- Parameter(clientID,"TekExpress Version")
				MHL Version
				returnval=m_Client.GetReport- Parameter(clientID,"Application Version")
TransferReport()	string clientID (see page 118) string filePath (see page 121)	This method transfers the report generated after the run. The report contains the summary of the run. The client must provide the location where the report is to be saved at the client-end	String that gives the status of the operation after it has been performed. Transfers all the result values in the form of a string.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.TransferRe- port(clientID,"C:\Report")

Command name	Parameters	Description	Return value	Example
TransferWave- forms()	string clientID (see page 118) string filePath (see page 121)	This method transfers all the waveforms from the folder for the current run.	String that gives the status of the operation after it has been performed.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client Transfer-
		NOTE. For each click of Run button, a folder is created in the X: drive. Transfer the waveforms before clicking the Run button.	Transfers all the waveforms in the form of a string.	Waveforms(clientID,"C:\Wave- forms")
			On success the return value is "Transferred".	
TransferImages()	string clientID T (see page 118) t string filePath t (see page 121) t t t c t c t t t	This method transfers all the images (screenshots) from the folder for the current run (for a given suite or measurement).	String that gives the status of the operation after it has been performed. Transfers all the images in the form of a string.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.TransferIm- ages(clientID, "C:\Waveforms")
		NOTE. For each click of Run button, a folder is created in the X: drive. Transfer the waveforms before clicking the Run button.		

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

string parameterString				
Name	Туре	Direction	Description	
parameterString	string	IN	Specifies the oscilloscope model, TekExpress version, and MHL version.	

Save, Recall, or Check if a Session is Saved

Command name	Parameters	Description	Return value	Example
CheckSession- Saved()	string clientID (see page 118) out bool saved (see page 118)	This method is called when a check is to be made to know if the current session is saved.	Return value is either True or False.	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.Check- SessionSaved(m_clientID, out savedStatus)
RecallSession()	string clientID (see page 118) string name (see page 120)	Recalls a saved session. The name of the session is provided by the client.	String that gives the status of the operation after it has been performed. The return value is "Session Recalled".	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.RecallSes- sion(clientID, savedSession- Name)
SaveSession()	string clientID (see page 118) string name (see page 120)	Saves the current session. The name of the session is provided by the client.	String that gives the status of the operation after it has been performed. The return value is "Session Sav- ed"/"Failed".	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.SaveSes- sion(clientID, desiredSession- Name)
SaveSessionAs()	string clientID (see page 118) string name (see page 120)	Saves the current session in a different name every time this method is called. The name of the session is provided by the client.	String that gives the status of the operation after it has been performed. The return value is "Session Saved".	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.SaveSes- sionAs(clientID, desiredSes- sionName)

NOTE. The Fail condition for PI commands occurs in any of the following cases: The server is LOCKED and the message displayed is "Server is locked by another client". The session is UNLOCKED and the message displayed is "Lock Session to execute the command". The server is NOTFOUND and the message displayed is "Server not found...Disconnect!". When none of these fail conditions occur, then the message displayed is "Failed...".

Unlock the Server

Command name	Parameters	Description	Return value	Example
UnlockSession()	<u>string clientID</u> (see page 118)	This method unlocks the server from the client. The ID of the client to be unlocked must be provided. <u>Note (see page 121)</u>	String that gives the status of the operation after it has been performed. The return value is "Session Un-Locked".	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.Unlock- Server(clientID)

NOTE. The Fail condition for PI commands occurs in any of the following cases: The server is LOCKED and the message displayed is "Server is locked by another client". The session is UNLOCKED and the message displayed is "Lock Session to execute the command". The server is NOTFOUND and the message displayed is "Server not found...Disconnect!". When none of these fail conditions occur, then the message displayed is "Failed...".

Disconnect from the Server

Command name	Parameters	Description	Return value	Example
Disconnect()	<u>string clientID</u> (see page 118)	This method disconnects the client from the server it is connected to. <u>Note (see</u> page 118)	Integer value that gives the status of the operation after it has been performed. 1 for Success –1 for Failure	m_Client = new Client() //m_Client is a reference to the Client class in the Client DLL. returnval as string returnval=m_Client.Discon- nect(m_clientID)

NOTE. The Fail condition for PI commands occurs in any of the following cases:

The server is LOCKED and the message displayed is "Server is locked by another client".

The session is UNLOCKED and the message displayed is "Lock Session to execute the command".

The server is NOTFOUND and the message displayed is "Server not found...Disconnect!".

About Algorithms

For all measurements, use the following guidelines to set up the oscilloscope.

Oscilloscope Setup Guidelines

The following guidelines are generalized.

- The signal is any channel, reference, or math waveform.
- The vertical scale for the waveform must be set so that the waveform does not exceed the vertical range of the oscilloscope.
- The sample rate must be set to capture sufficient waveform detail and avoid aliasing.
- Longer record lengths increase measurement accuracy but the oscilloscope takes longer to measure each waveform.

Measurement Procedure

Signal validation is an automatic, default feature in MHL.

Before each measurement, the signal is validated.

3.1.1.1: Standby Output Voltage Test - VOFF

This MHL Transmitter test measures that the MHL source output voltage is within the specified level limits when the source device is in Standby State or power off mode as specified in the CDF.

Required Test Equipment

In addition to the DUT, you will need the following:

- Digital Multimeter: DMM4020
- Digital Storage Oscilloscope: DPO/DSA/MSO 70000/B/C/D Series Real time Oscilloscope with BW greater than or equal to 8GHz with Opt DJA, Opt 2XL and Opt. MHD (MHL Advanced Analysis and Compliance Software)
- One Probe: P7313SMA
- Test Fixture: TF-MHL-TPA-P-WOSO*TF-MHL-TPA-TT or TF-MHL-TPA-P-TTSO
- Power supply: PWS4205 or PWS2185 (if using external Power Supply option)
- CBus Sink Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Source DUT Port) or SOSI Tektronix board

Connect the equipment as shown in Source — VOFF Setup for Clock Test (see page 155).

Connect the CBus Sink board to the CBus and VBus of the test fixture to enable device discovery and CBus information exchange.

Set the DUT to operate in normal mode.

Measurement Algorithm

Do the following test for all stand-by and power off modes specified in CDF of the DUT.

- 1. Connect the equipment as shown in <u>Source VOFF Setup for Clock Test (see page 155)</u> and unplug the DUT from the Test Fixture. Connect the CBus and VBus from the Test Fixture to the Source DUT port of the SL-860 (Source DUT Port) or SOSI Tektronix board.
- 2. Turn on the DC Power Supply and provide power to VTERM_IN if external Power Supply is used for VTERM, else the Tektronix Oscilloscope provides the VTERM supply internally through the probes.
- 3. Set VTERM = VTERM {min} 3.135V using Oscilloscope probe control settings if internal power supply is used, else use the external power supply.
- **4.** Measure and record the voltages (VBASELINE) between MHL+ and VTERM and between MHL- and VTERM.
- 5. Set VTERM = VTERM {min} 3.465V using Oscilloscope probe control settings if internal power supply is used, else use the external power supply.
- **6.** Measure and record the voltages (VBASELINE) between MHL+ and VTERM and between MHLand VTERM.
- 7. Plug the DUT to the Test Fixture as shown in <u>Source VOFF Setup for Clock Test (see page 155)</u>. Connect the CBus and VBus from the Test Fixture to the Source DUT port of the SL-860 (Source DUT Port) or SOSI Tektronix board.
- **8.** Put the DUT in the power mode following the instruction in CDF. VBus provision should follow the instruction in CDF.
- 9. Set VTERM = VTERM {min} 3.135V.
- 10. Measure the voltage (VOFF_BEFORE_COMPENSATION) between MHL+ and VTERM.
- 11. Measure the voltage (VOFF_BEFORE_COMPENSATION) between MHL- and VTERM.
- **12.** Record VOFF values for MHL+ and MHL-; VOFF = VOFF_BEFORE_COMPENSATION VBASELINE.
- **13.** Set VTERM = VTERM{max} 3.465V and repeat steps 10 12.
- 14. If all recorded VOFF values are within +/- 10mV (inclusive), PASS. Otherwise FAIL.

3.1.1.5: Common-Mode Output Swing Voltage Test - VCMSWING

This MHL Transmitter test confirms that common-mode output voltage swing amplitude is within the specified limits when the DUT operates in normal mode.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two probes: one P313SMA and one P7240
- Test Fixture: TPA-P Source with a micro USB, pluggable to be used for Source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 1 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the calculations described below.

- 1. Acquire the waveform.
- 2. Consider the data point in the region of 3 unit intervals from the Rise transition for V_{High} and Fall transition for V_{Low} .
- 3. Average the respective V_{High} and V_{Low} for 10,000 regions and get V_{High} and V_{Low} . measurements.
- 4. Calculate $V_{CMSWING}$ for the given V_{TERM} ,

Where:

- $V_{\text{TERM}} = 3.135 \text{ V} (\text{lowest})$
- V_{TERM} = 3.465 V (highest)

If 360 mV \leq V_{CMSWING} \leq Minimum (720 mV, 0.85 V_{DFSWING}) for all recorded V_{CMSWING} values, then PASS. Otherwise, FAIL.

3.1.1.7: Common-mode Rise and Fall Times Test - $T_{R_{cm}}$, $T_{F_{cm}}$

This MHL Transmitter test confirms that the rise time and fall time of the common-mode output signal are within the specified limits.

Rise time and Fall time are measured on the Transition of the common-mode signal by measuring the time difference between the 20% and 80% level during the Transition. The Reference Level is calculated based on the Common-mode Swing measurement. This measurement is performed by averaging the measured RT and FT for 10,000 or more transitions.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- 2 Probes: one P7313SMA and one P7240
- Test Fixture TPA-P Source with a micro USB pluggable for source testing
- DC Power Supply: PWS4205 or PWS2815 (to be used if an external power supply-based test setup is used)
- CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 1 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the calculations described below.

The Rise Time measurement is the time difference between when the VRefHi reference level is crossed and the VRefLo reference level is crossed on the rising edge of the waveform. The Rise Time algorithm uses the VRef values as the reference voltage level. Each edge is defined by the slope, voltage reference level (threshold), and hysteresis. The application calculates this measurement using the following equations:

Where:

- T^{Rise} is the Rise Time
- T^{Hi+} is the VRefHi crossing on the rising edge
- T^{Lo+} is the VRefLo crossing on the rising edge

 V_{RefHi} is 80% of the Ref level and V_{RefLo} is 20% of the Ref level.

$$T_{nFall} = T_{nHi} - T_{nLo} \label{eq:Table}$$

$$T_{Fall} = \frac{\sum_{1}^{n} T_{Fall}(n)}{n}$$

$$T_{nRIse} = T_{nHi} - T_{nLo}$$

$$T_{Rise} = \frac{\sum_{1}^{n} T_{Rise}(n)}{n}$$

3.1.1.10: MHL Clock Duty Cycle Test – 24 Bit or Packed Pixel Mode (CTS 1.X); Normal Mode (CTS 2.0)

This test confirms that the MHL clock duty cycle in 24-bit or packed pixel mode does not exceed the limits allowed by the specification. (CTS 1.X)

This test confirms that the MHL clock duty cycle does not exceed the limits allowed by the specification in Normal Mode. (CTS 2.0)

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two probes: one P7313SMA and one P7240
- Test Fixture: TPA-P Source with a micro USB pluggable to be used for source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 1 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the calculations described below.

The +Duty Cycle and –Duty Cycle measurements calculate the ratio of the positive (or negative) portion of the cycle relative to the period. The application calculates these measurements as follows:

Where:

- D+ is the positive duty cycle
- D- is the negative duty cycle
- W+ is the positive pulse width
- W- is the negative pulse width
- PClock is the period

3.1.1.11: MHL Clock Jitter Test (CTS 1.X) – in Normal Mode (CTS 2.0)

This MHL Transmitter test confirms that the MHL Clock output does not contain excessive jitter greater than the limit allowed by the specification.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two probes: one P313SMA and one P7240
- Test Fixture: TPA-P Source with a micro USB pluggable to be used for source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 1 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the calculations described below.

TIE (Time Interval Error) is the difference in time between an edge in the source waveform and the corresponding edge in a reference clock. The reference clock is usually determined by a clock recovery process performed on the source waveform. The source waveform is filtered using a 2-GHz low-pass filter. For Explicit-Clock clock recovery, the process is performed on an explicitly identified source.

If the signal is Clock Type,

The application calculates the Clock TIE measurement using the following equation:

 $TIE_nClock = T_nClock - T_n^{\circ}Clock$

Where:

- TIE^{Clock} is the VRefMid crossing time for the specified clock edge.
- T'^{Clock} is the corresponding edge time for the specified reference clock after recovering it using PLL with a bandwidth of 4 MHz.

3.1.1.14: MHL Clock Duty Cycle Test - Packed Pixel Mode

This test confirms that the MHL clock duty cycle in packed pixel mode does not exceed the limits allowed by the specification.

NOTE. This test is only available in CTS 2.0.

For this test, use the same Required Test Equipment and Measurement Algorithm as

<u>3 1 1 10MHL Clock Duty Cycle 24 Bit or Packed Pixel Mode CTS 1 X Normal Mode CTS 2 0 (see page 158)</u>

3.1.1.15: MHL Clock Jitter Test in Packed Pixel Mode

NOTE. This test is only available in CTS 2.0.

This test confirms that the MHL Clock output does not contain excessive jitter larger than the limit allowed by the specification in Packed Pixel Mode.

For this test, use the same Required Test Equipment and Measurement Algorithm as

3. 1.1.11: MHL Clock Jitter Test in Normal Mode (see page 159).

3.1.1.2: Single-Ended High Level Voltage Test - VSE_HIGH

This MHL Transmitter test confirms that the single-ended high output voltage level is within the specified limits when the DUT is in normal mode.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two Differential probes: P7313SMA
- Test Fixture: TPA-P source with a micro USB, pluggable to be used for source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 2 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the calculations described below.

The single-ended High and Low are measured using a customized algorithm to find regions that were identified based on the Bit stream.

- 1. Acquire the waveform by capturing at least 1000 regions using a real-time oscilloscope.
- 2. Find the Region of LHHHH transition on the region of single-ended measurement.
- **3.** Measure and record the Histogram mode value at the middle HH pattern of the MHL-P signal when the common-mode voltage is high and it is MHLP-SEHIGH.
- 4. Measure and record the Histogram mode value at the middle HLLLL of the MHL-N signal when the common-mode signal is high and it is MHLN-SEHIGH.
- 5. Compare the measured values with the limit values:

If $V_{\text{TERM}} - 540 \text{ mV} \le V_{\text{SE}_HIGH} \le V_{\text{TERM}} + 10 \text{ mV}$ for all recorded V_{SE_HIGH} values, then PASS. Otherwise, FAIL.

Where:

- V_{TERM} = 3.135 V (lowest)
- $= V_{\text{TERM}} = 3.465 \text{ V} \text{ (highest)}$
- Limit Values are $\geq 2595 \text{ mV}$ and $\leq 3145 \text{ mV}$

3.1.1.3: Single-Ended Low Level Voltages Test - V_{SE_LOW}

This MHL Transmitter test confirms that the single-ended low output voltage level is within the specified limits when the source device is in normal mode.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two Differential Probes: P7313SMA
- Test Fixture: TPA-P Source with a micro USB, pluggable to be used for source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 2 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the calculations described below.

The single-ended High and Low are measured using a customized algorithm to find regions of LHHHH transition on single-ended measurement regions.

- 1. Acquire the waveform by capturing at least 1000 regions using a real-time oscilloscope.
- 2. Find the region of LHHHH transition on the region of single-ended measurement
- **3.** Measure and record the Histogram mode value at the middle HH on the MHL-N signal when the common-mode signal is low, and it is MHLN-SE-LOW.
- 4. Measure and record the Histogram mode value at the middle HLLLL pattern on the MHL-P signal using the Histogram technique when the common-mode voltage is low, and it is MHLP-SELOW.
- 5. Compare the measured values with limit values:

If $V_{\text{TERM}} - 1760 \text{ mV} \le V_{\text{SE}_{\text{LOW}}} \le V_{\text{TERM}} - 700 \text{ mV}$ for all recorded $V_{\text{SE}_{\text{Low}}}$ values, then PASS. Otherwise, FAIL

Where:

- V_{TERM} = 3.135 V (lowest)
- V_{TERM} = 3.465 V (highest)
- Limit values are ≥ 1375 and ≤ 2435

3.1.1.4: Differential Output Swing Voltage Test - VDF_SWING

This MHL Transmitter test confirms that the differential output voltage swing amplitude is within the specified limits when the source device is in normal mode.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two probes: one P313SMA and one P7240
- Test Fixture: TPA-P Source with a micro USB, pluggable to be used for source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 1 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the calculations described below.

- 1. Acquire the waveform. Slice and overlap data points for approximately 5 UI and then measure the minimum and maximum using a common-mode clock waveform.
- 2. Consider the histogram vertical window for the data point of value > minimum + 0.75^* (maximum minimum) and measure the mode as V_{High} .
- 3. Consider the histogram vertical window for the data point of value > maximum 0.75^* (maximum minimum) and measure the mode as V_{Low}.
- 4. Calculate the average (V_{CMSWING}) of the measured common-mode High and Low values.
- 5. Record the histogram mode value for the common-mode Low.
- 6. Calculate V_{CMSWING} for the given V_{TERM} .

Where:

- V_{TERM} = 3.135 V (lowest)
- V_{TERM} = 3.465 V (highest)

If 600 mV \leq V_{DFSWING} \leq 1000 mV for all recorded V_{DFSWING} values, then Pass. Otherwise, Fail

The measurement takes into consideration all the data points on the differential signal for 10,000 clock periods.

3.1.1.6: Differential Rise and Fall Times Test - T_{R_DF}, T_{F_DF}

This MHL Transmitter test confirms that the rise and fall times of the differential output signal are equal to or larger than the minimum limit.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two probes: one P313SMA and one P7240
- Test Fixture: TPA-P Source with a micro USB, pluggable to be used for Source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 1 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the calculations described below.

- 1. Perform the Differential Swing measurement.
- 2. Arrive at 20% and 80% levels of the signal.
- **3.** Perform the Rise time and Fall time calculations similar to the Common-mode Rise time and Fall time on the data using the Reference level arrived at in step 2.

3.1.1.8: Differential Intra-Pair Skew Test - TSKEW_DF

This MHL Transmitter test confirms that the timing skew in the differential signal pair is below the specified limits.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two Differential probes: P7313SMA
- Test Fixture: TPA-P Source with a micro USB, pluggable to be used for Source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 2 (see page 14).

Measurement Algorithm

This measurement is performed using a custom algorithm that evaluates the qualified region for the measurement. The skew is the average of 1000 qualified regions.

3.1.1.12: MHL Data Eye Diagram Test (CTS 1.X) – in Normal Mode (CTS 2.0)

This MHL Transmitter test confirms that the MHL Data output has a signal quality that meets the eye opening required by the specification.

NOTE. If the MHL Data Eye diagram test fails due to mask hits, TekExpress MHL Solution provides the option to the user to move the mask horizontally to achieve zero or minimal hits. Refer to the <u>Mask</u> <u>Movement (see page 189)</u> procedure.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- Two probes: one P313SMA and one P7240
- Test Fixture: TPA-P Source with micro USB, pluggable to be used for Source testing
- Power supply: PWS4205 or PWS2185 (to be used if an external power supply-based test setup is used)
- CBUS: CBUS Sink Adapter board

Connect the equipment as shown in Connection Diagram 1 (see page 14).

Measurement Algorithm

TekExpress MHL automatically executes the algorithm described below.

- 1. Acquire the Waveform Differential Data and Common-mode clock waveforms.
- 2. Filter the clock signal using the 2-GHz low-pass filter.
- 3. Recover the clock using 4 MHz PLL
- 4. Plot the Eye diagram using the Differential data signal with the recovered clock from the common-mode signal.
- 5. The Jitter is measured as:

Data period – Eye opening (EYE width)

3.1.1.16: MHL Data Eye Diagram Test in Packed Pixel Mode

NOTE. This test is only available in CTS 2.0.

This test confirms that the MHL Data output has signal quality that meets the eye opening required by the specification in Packed Pixel Mode.

For this test, use the same Required Test Equipment and Measurement Algorithm as

3. 1.1.12: MHL Data Eye Diagram Test in Normal Mode (see page 166).

4.1.1.1: Input Signal DC Voltage Level Tolerance Test

This MHL Receiver test confirms that the sink device supports input signal DC voltage level allowed by the specification.

Make the connection after signal calibration is done. Set the DUT to operate in normal mode.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- MHL Signal Generator: 7122C with option 01, 02 or 06 and 08, and Option SDX with Direct Synthesis capability to simulate Cable emulator effect and rise time filter effect.
- Test Fixture: 1 set TF-MHL-TPA-P-WOSI
- Rise time Filter: 2 Picosecond Pulse labs 120PS
- Bias Tees: 2 Mini Circuits Bias Tees ZX85–12G-S+
- CBUS Source Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Sink DUT Port) or SOSI Tektronix board

Connect the equipment as shown in MHL Input Signal DC Voltage Level Test (see page 169).

Measurement Algorithm

1. Connect the equipment as shown for <u>Single-Ended Signals Calibration Setup for Sink Tests (see page 169)</u> and <u>Differential & Common-Mode Signals Calibration Setup for Sink Tests (see page 170)</u>.

Set VTERM = 3.3V, AWG Ch1 transmitting MHL+ and AWG Ch2 transmitting MHL- signals. Ensure the Bias Tees are used at the output of the AWG channels along with 120ps filters.

- 2. Calibrate the Signal Generator AWG7122C output for the following settings.
 - a. Frequency: Highest frequency supported by the Sink DUT
 - b. Pattern: MHL Gray Ramp data streams
 - **c.** Rise/fall times:
 - Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal 600ps (20% - 80%)

Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal 600ps (20% - 80%)

- d. Swing voltages: Differential signal 800mV, Common-mode signal 540mV
- 3. DC level of the output single-ended signal: V_{TERM} -300mV
- 4. Connect the equipment <u>MHL Input Signal DC Voltage Level Test (see page 169)</u> with the CBus Source board connected to the Tektronix fixture CBus and VBus ports.
- 5. Turn on the DUT and enable MHL mode through Device Discovery and CBus Information Exchange with the CBus Source board.
- 6. Examine the output of the Sink through the display image.
- 7. Record errors on the display if any for the given V_{TERM} frequency and DC voltage level.
- 8. Set DC level of the output single-ended signal: $V_{TERM} 1200 mV$
- **9.** Turn on the DUT and enable MHL mode through Device Discovery and CBus Information Exchange with the CBus Source board.
- **10.** Examine the output of the Sink through the display image.
- 11. Record errors on the display if any for the given V_{TERM} , frequency and DC voltage level.
- 12. If there is no error on the display in all recorded results, then PASS. Otherwise FAIL.

4.1.1.2: Input Signal Minimum and Maximum Swing Voltages Tolerance Test

This MHL Receiver test confirms that the sink device supports input signal DC voltage level and swing voltage allowed by the specification.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- MHL Signal Generator: AWG7122C with option 01, 02 or 06 and 08 and Option SDX with Direct Synthesis capability, to simulate Cable emulator effect and Rise time filter effect.
- Test Fixture: 1 set TF-MHL-TPA-P-WOSI
- Rise time Filter: 2 Picosecond Pulse labs 120PS
- Bias Tees: 2 Mini Circuits Bias Tees ZX85–12G-S+
- CBUS Source Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Sink DUT Port) or SOSI Tektronix board

Make the connection as shown in <u>Sink MHL Input Signal DC Voltage Level Min-Max Test (see page 172)</u> and <u>Amplifier Connections to DC Power Supply (see page 173)</u> after signal calibration is done. Set the DUT to operate in normal mode.

Measurement Algorithm

The below procedure is fully automated by Tektronix MHL Compliance Software (Option MHD).

- Connect the equipment as shown for <u>Single Ended Signals Calibration Setup for Sink Min Max Test</u> (see page 173), and <u>Differential and Common Mode Signals Calibration Setup for Min Max Test (see page 174)</u>. Set V_{TERM} = 3.3V, AWG Ch1 transmitting MHL+ and AWG Ch2 transmitting MHLsignals. Ensure the Bias Tees are used at the output of the AWG channels along with 120ps filters.
- 2. Calibrate the Signal Generator AWG7122C output for the following settings.
 - a. Frequency: Highest frequency supported by the Sink DUT
 - **b.** Pattern: MHL Gray Ramp data streams
 - **c.** Rise/fall times:
 - Less than or equal to 2.25Gbps
 - Differential signal 200ps (20% 80%), Common-mode signal 600ps (20% 80%)
 - Above 2.25Gbps
 - Differential signal 100ps (20% 80%), Common-mode signal 600ps (20% 80%)
 - d. Swing voltages: Differential signal 800mV, Common-mode signal 540mV
 - e. DC level of the output single-ended signal: $V_{TERM} 750mV$
- **3.** Connect the equipment as shown in <u>Sink MHL Input Signal DC Voltage Level Min-Max Test (see page 172)</u> with CBus Source board connected to Tektronix fixture CBus and VBus ports.
- **4.** Turn on the DUT and enable MHL mode through Device Discovery and CBus Information Exchange with the CBus Source board.
- 5. Examine the output of the Sink through the display image.
- 6. Record errors on the display if any for the given V_{TERM} , frequency and differential and common-mode swing voltages.
- 7. Adjust the differential swing voltage to 1000mV, the common-mode swing voltage to 720mV and the DC level of the output single-ended signal to V_{TERM} 1200mV.
- 8. Connect the equipment as shown in as shown in <u>Sink MHL Input Signal DC Voltage Level Min-Max</u> Tests (see page 172).
- **9.** Turn on the DUT and enable MHL mode through Device Discovery and CBus Information Exchange with the CBus Source board.
- 10. Examine the output of the Sink through the display image.
- 11. Record errors on the display if any for the given V_{TERM} , frequency and differential and common-mode swing voltages.
- 12. Adjust the differential swing voltage to 200mV, the common-mode swing voltage to 170mV and the DC level of the output single-ended signal to V_{TERM} 300mV.
- **13.** Connect the equipment as shown in as shown in <u>Sink MHL Input Signal DC Voltage Level Min-Max</u> <u>Tests (see page 172)</u>.

- **14.** Turn on the DUT and enable MHL mode through Device Discovery and CBus Information Exchange with the CBus Source board.
- 15. Examine the output of the Sink through the display image.
- 16. Record errors on the display if any for the given V_{TERM} , frequency and differential and common-mode swing voltages.
- 17. If there is no error on the display in all recorded results, then PASS. Otherwise FAIL.

4.1.1.3: Intra-Pair Skew Tolerance Test

This MHL Receiver test confirms that the sink device supports input signal DC voltage level and swing voltage allowed by the specification.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- MHL Signal Generator: AWG7122C with option 01, 02 or 06 and 08 and Option SDX with Direct Synthesis capability, to simulate Cable emulator effect and Rise time filter effect.
- Test Fixture: 1 set TF-MHL-TPA-P-WOSI
- Rise time Filter: 2 Picosecond Pulse labs 120PS
- Bias Tees: 2 Mini Circuits Bias Tees ZX85–12G-S+
- CBUS Source Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Sink DUT Port) or SOSI Tektronix board

Connect the equipment as shown in MHL Input Signal DC Voltage Level Test (see page 169).

Measurement Algorithm

1. Connect the equipment as shown for <u>Single-Ended Signals Calibration Setup for Sink Test (see</u> page 169) and Differential & Common-Mode Signals Calibration Setup for Sink Test (see page 170).

Set V_{TERM} = 3.3V, AWG Ch1 transmitting MHL+ and AWG Ch2 transmitting MHL- signals. Ensure the Bias Tees are used at the output of the AWG channels along with 120ps filters.

- 2. Calibrate the Signal Generator AWG7122C output for the following settings.
 - a. Frequency: Highest frequency supported by the Sink DUT
 - **b.** Pattern: MHL Gray Ramp data streams
 - **c.** Rise/fall times:
 - Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal 600ps (20% - 80%)

- Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal 600ps (20% - 80%)

- a. Swing voltages: Differential signal 800mV, Common-mode signal 540mV
- **b.** DC level of the output single-ended signal: V_{TERM} 750mV
- c. Intra-pair skew: Differential skew 0ps, Common-mode skew 0ps
- **3.** Connect the equipment as shown in <u>MHL Input Signal DC Voltage Level Test (see page 169)</u> with the CBus Source board connected to the Tektronix fixture CBus port.
- **4.** Turn on the DUT and enable MHL mode through Device Discovery and CBus Information Exchange with the CBus Source board.
- 5. Examine the output of the Sink through the display image.
- 6. Confirm that there is no error on the display. If there is any error, STOP. The test Failed.
- 7. Increase the intra-pair skew of differential signal and common-mode signal by the same amount to the maximum where error appears on the display. Make the positive channel leads the negative channel in time, which is called positive skew direction.
- 8. Record the maximum intra-pair skew for the given V_{TERM} , frequency and skew direction.
- 9. Set the differential and common-mode intra-pair skews to 0ps.
- **10.** Increase the intra-pair skew of differential signal and common-mode signal by the same amount to the maximum where error appears on the display. Make the positive channel lags the negative channel in time, which is called negative skew direction.
- 11. Record the maximum intra-pair skew for the given V_{TERM} , frequency and skew direction.

4.1.1.4: Jitter Tolerance Test (CTS 1.X) – in Normal Mode (CTS 2.0)

This MHL Receiver test confirms that the sink device can tolerate the maximum clock and data jitter amounts allowed by the specification.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- MHL Signal Generator: AWG7122C with option 01, 02 or 06 and 08 and Option SDX with Direct Synthesis capability, to simulate Cable emulator effect and Rise time filter effect.
- Test Fixture: 1 set TF-MHL-TPA-P-WOSI
- Rise time Filter: 2 Picosecond Pulse labs 120PS
- Bias Tees: 2 Mini Circuits Bias Tees ZX85–12G-S+
- CBUS Source Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Sink DUT Port) or SOSI Tektronix board

Connect the equipment as shown in MHL Input Signal DC Voltage Level Test (see page 169).

Measurement Algorithm

- Connect the equipment as shown for <u>Single-Ended Signals Calibration Setup for Sink Tests (see page 169)</u> and <u>Differential & Common-Mode Signals Calibration Setup for Sink Tests (see page 170)</u>. Set V_{TERM} = 3.3V, AWG Ch1 transmitting MHL+ and AWG Ch2 transmitting MHL- signals. Ensure the Bias Tees are used at the output of the AWG channels along with 120ps filters.
- 2. Calibrate the Signal Generator AWG7122C output for the following settings.
 - a. Frequency: Lowest frequency supported by the Sink DUT
 - **b.** Pattern: MHL Gray Ramp data streams
 - c. Rise/fall times:
 - Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal 600ps (20% - 80%)

- Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal 600ps (20% - 80%)

- d. Swing voltages: Differential signal 800mV, Common-mode signal 360mV
- e. DC level of the output single-ended signal: V_{TERM} 540mV
- **3.** Set the clock jitter frequency to 10MHz and the data jitter frequency to 500KHz. Inject clock jitter and data jitter to the TP1 maximum amount specified in MHL Spec for the given clock frequency.
- 4. Adjust the differential signal swing to get the marginal eye diagram specified in MHL Spec.
- **5.** Generate MHL signals with Cable emulator effects using the innovative Direct Synthesis capability of AWG7122C.
- 6. Connect the equipment as shown in <u>MHL Input Signal DC Voltage Level Test (see page 169)</u> with the CBus Source board connected to the Tektronix fixture CBus and VBus ports.
- 7. Turn on the DUT and enable MHL mode through Device Discovery and CBus Information Exchange with the CBus Source board.

- 8. Examine the output of the Sink through the display image.
- 9. Record error on the display if any for the given V_{TERM} , clock frequency, jitter frequency and clock edge location.
- 10. Change the common-mode clock edge location by $0.1T_{bit}$ step with respect the differential data edge for 10 times.
- 11. Examine the display at each step and record error on the display if any for the given V_{TERM} , clock frequency, jitter frequency and clock edge location.
- 12. Repeat the above steps 4-11 for clock jitter frequency 7MHz and data jitter frequency 1MHz.
- 13. Repeat the above steps 2-12 for the minimum resolution supported by the DUT.
- 14. If there is no error on the display in all recorded results, then PASS. Otherwise FAIL.

4.1.1.8: Jitter Tolerance Test in Packed Pixel Mode

NOTE. This test is only available in CTS 2.0.

This test confirms that the sink device can tolerate the maximum clock and data jitter amounts allowed by the specification in Packed Pixel Mode.

For this test, use the same Required Test Equipment and Measurement Algorithm as

4. 1.1.4 Jitter Tolerance Test in Normal Mode (see page 175)

5.1.1.1: Input Signal Single-Ended Voltage Level Tolerance

This MHL Receiver test confirms that the dongle device supports input signal single-ended voltage level allowed by the specification.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- MHL Signal Generator: AWG7122C with option 01, 02 or 06 and 08 and Option SDX with Direct Synthesis capability, to simulate Cable emulator effect and Rise time filter effect.
- Rise time Filter: 2 Picosecond Pulse labs 120PS
- Test Fixture: 1 set TF-MHL-TPA-R-WOSO
- DC Power Supply: PWS4205 or PWS2185
- Bias Tees: 2 Mini Circuits Bias Tees ZX85–12G-S+

- CBUS Source Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Sink DUT Port) or SOSI Tektronix board
- A/V Display

Make the connection as shown in <u>Dongle – Input Signal Single-Ended Voltage Level Tolerance Test (see page 179)</u> after calibration is done. Set the DUT to operate in normal mode.

Measurement Algorithm

The below procedure is fully automated by Tektronix MHL Compliance Software (Option MHD).

- Connect the equipment as shown in <u>Single-Ended Signals Calibration Setup for Dongle Tests (see page 180)</u> and as shown in <u>Differential & Common-Mode Signals Calibration Setup for Dongle Tests</u> (see page 180). Set V_{TERM} = 3.3V, AWG Ch1 transmitting MHL+ and AWG Ch2 transmitting MHL-signals. Ensure the Bias Tees are used at the output of the AWG channels along with 120ps filters.
- **2.** Calibrate the MHL Signal Generator AWG7122C output for the following settings. (Calibration of differential and common-mode signals).
 - a. Frequency: Highest frequency supported by the Dongle DUT
 - b. Pattern: MHL Gray Ramp data streams
 - **c.** Rise/fall times:
 - Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal

600ps (20% - 80%)

- Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal

600ps (20% - 80%)

- d. Swing voltages: Differential signal 800mV, Common-mode signal 540mV e.
- 3. Adjust the DC level of the MHL Signal Generator AWG7122C so that $V_{SE_HIGH} = V_{TERM} + 10 \text{ mV}$, $V_{SE_HIGH} = V_{TERM} 540 \text{ mV}$, $V_{SE_LOW} = V_{TERM} 700 \text{ mV}$ and $V_{SE_LOW} = V_{TERM} 1760 \text{ mV}$. Record the DC level setting for each single-ended value setting. (Calibration of single-ended signals)
- Connect the equipment as shown in <u>Dongle Input Signal Single-Ended Voltage Level Tolerance Test</u> (see page 179) with CBus Source board connected to Tektronix fixture CBus port. Provide VBus if DUT is unpowered dongle. Do not provide VBus if DUT is powered dongle.
- **5.** Turn on the DUT and enable the MHL mode through Device Discovery and CBUS Information Exchange with the CBUS Source board.

- 6. Adjust the DC level of the MHL Signal Generator AWG7122C output so that $V_{SE HIGH} = V_{TERM} + 10 \text{ mV}$.
- 7. Examine the output of the Dongle DUT on the Display.
 - = Record errors on the display if any for the given V_{TERM} , frequency and single-ended voltage.
- 8. Adjust the DC level of the output so that $V_{SE_{HIGH}} = V_{TERM} 540 \text{ mV}$.
- 9. Examine the output of the Dongle DUT on the Display.
 - Record errors on the display if any for the given V_{TERM}, frequency and single-ended voltage.
- 10. Adjust the DC level of the output so that $V_{SE_LOW} = V_{TERM} 700 \text{ mV}$.
- 11. Examine the output of the Dongle DUT on the Display.
 - = Record errors on the display if any for the given V_{TERM} , frequency and single-ended voltage.
- 12. Adjust the DC level of the output so that $V_{SE_LOW} = V_{TERM} 1760 \text{ mV}$.
- **13.** Examine the output of the Dongle DUT on the Display.
 - Record errors on the display if any for the given V_{TERM}, frequency and single-ended voltage.
- 14. If there is no error on the display in all recorded results, then PASS. Otherwise FAIL.

5.1.1.2: Input Signal Minimum and Maximum Swing Voltage Tolerance Test

This MHL Receiver test confirms that the dongle device supports input signal minimum and maximum swing voltages allowed by the specification.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- MHL Signal Generator: AWG7122C with option 01, 02 or 06 and 08 and Option SDX with Direct Synthesis capability, to simulate Cable emulator effect and Rise time filter effect.
- Rise time Filter: 2 Picosecond Pulse labs 120PS
- Test Fixture: 1 set TF-MHL-TPA-R-WOSO
- DC Power Supply: PWS4205 or PWS2185
- Bias Tees: 2 Mini Circuits Bias Tees ZX85–12G-S+
- CBUS Source Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Sink DUT Port) or SOSI Tektronix board
- A/V Display

Make the connection as shown in <u>Dongle Min-Max Setup (see page 183)</u> and <u>Amplifier Connections to</u> <u>DC Power Supply (see page 184)</u> after calibration is done. Set the DUT to operate in normal mode.

Measurement Algorithm

The below procedure is fully automated by Tektronix MHL Compliance Software (Option MHD).

- Connect the equipment as shown in <u>Single Ended Signals Calibration Setup For Dongle Min Max</u> <u>Test (see page 183)</u> and as shown in <u>Differential and Common-Mode Signals Calibration Setup for</u> <u>Dongle Min Max Test (see page 184)</u>. Set V_{TERM} = 3.3V, AWG Ch1 transmitting MHL+ and AWG Ch2 transmitting MHL- signals. Ensure the Bias Tees are used at the output of the AWG channels along with 120ps filters.
- 2. Calibrate the MHL Signal Generator AWG7122C output for the following settings.
 - a. Frequency: Highest frequency supported by the Dongle DUT
 - b. Pattern: MHL Gray Ramp data streams
 - **c.** Rise/fall times:
 - Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal 600ps (20% - 80%)

- Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal 600ps (20% - 80%)

- 3. Adjust the DC level and swing amplitudes of the MHL Signal Generator AWG7122C so that $V_{SE_HIGH} = V_{TERM} + 10 \text{ mV}$, $V_{SFSWING} = 600 \text{ mV}$ and $V_{CMSWING} = 360 \text{ mV}$. Record the DC level and swing amplitude settings.
- 4. Adjust the DC level and swing amplitudes of the MHL Signal Generator AWG7122C so that $V_{SE_LOW} = V_{TERM} 1760 \text{ mV}$, $V_{DFSWING} = 1000 \text{ mV}$ and $V_{CMSWING} = 720 \text{ mV}$. Record the DC level and swing amplitude settings.
- 5. Connect the equipment as shown in <u>Single-Ended Signals Calibration Setup for Dongle Tests (see page 180)</u> with the CBus Source board connected to the Tektronix fixture CBus port. Provide VBus if DUT is unpowered dongle. Do not provide VBus if DUT is powered dongle.
- **6.** Turn on the DUT and enable the MHL mode through Device Discovery and CBUS Information Exchange with the CBUS Source board.
- 7. Adjust the DC level of the MHL Signal Generator so that $V_{SE_HIGH} = V_{TERM} + 10 \text{ mV}$, $V_{DFSWING} = 600 \text{ mV}$ and $V_{CMSWING} = 360 \text{ mV}$.
- 8. Examine the output of the Dongle DUT on the Display.
 - = Record errors on the display, if any, for the given V_{TERM} , frequency and single-ended voltage.
- 9. Adjust the DC level and swing amplitudes of the MHL Signal Generator so that $V_{SE_{LOW}} = V_{TERM} 1760 \text{ mV}$, $V_{DFSWING} = 1000 \text{ mV}$ and $V_{CMSWING} = 720 \text{ mV}$.
- 10. Examine the output of the Dongle DUT on the Display.
 - Record errors on the display if any for the given V_{TERM}, frequency and single-ended voltage.
- 11. If there is no error on the display in all recorded results, then PASS. Otherwise FAIL.

5.1.1.3: Intra-Pair Skew Tolerance Test

This MHL Receiver test confirms that the dongle device can tolerate the maximum intra-pair skew allowed by the specification.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- MHL Signal Generator: AWG7122C with option 01, 02 or 06 and 08 and Option SDX with Direct Synthesis capability, to simulate Cable emulator effect and Rise time filter effect.
- Rise time Filter: 2 Picosecond Pulse labs 120PS
- Test Fixture: 1 set TF-MHL-TPA-R-WOSO
- DC Power Supply: PWS4205 or PWS2185
- Bias Tees: 2 Mini Circuits Bias Tees ZX85–12G-S+
- CBUS Source Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Sink DUT Port) or SOSI Tektronix board
- A/V Display

Make the connection as shown in <u>Dongle – Input Signal Single-Ended Voltage Level Tolerance Test</u> (see page 179) after calibration is done.

Measurement Algorithm

The below procedure is fully automated by Tektronix MHL Compliance Software (Option MHD).

- Connect the equipment as shown in <u>Single-Ended Signals Calibration Setup for Dongle Tests (see page 180)</u> and as shown in <u>Differential & Common-Mode Signals Calibration Setup for Dongle Tests</u> (see page 180). Set V_{TERM} = 3.3V, AWG Ch1 transmitting MHL+ and AWG Ch2 transmitting MHL-signals. Ensure the Bias Tees are used at the output of the AWG channels along with 120ps filters.
- 2. Calibrate the MHL Signal Generator AWG7122C output for the following settings.
 - a. Frequency: Highest frequency supported by the Dongle DUT
 - b. Pattern: MHL Gray Ramp data streams
 - **c.** Rise/fall times:
 - Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal

600ps (20% - 80%)

- Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal

600ps (20% - 80%)

- d. Swing voltages: Differential signal 800mV, Common-mode signal 540mV
- e. DC level of the output single-ended signal: $V_{TERM} 750mV$
- f. Intra-pair skew: Differential skew 0ps, Common-mode skew 0ps

- Connect the equipment as shown in <u>Dongle Input Signal Single-Ended Voltage Level Tolerance Test</u> (see page 179) with the CBus Source board connected to the Tektronix fixture CBus port. Provide VBus if DUT is unpowered dongle. Do not provide VBus if DUT is powered dongle.
- **4.** Turn on the DUT and enable the MHL mode through Device Discovery and CBUS Information Exchange with the CBUS Source board.
- 5. Examine the output of the Dongle DUT on the Display.
- 6. Confirm that there is no error on the display. If there is any error on the display, STOP. The test FAILed.
- 7. Increase the intra-pair skew of differential signal and common-mode signal by the same amount to the maximum where error appears on the display. Make the positive channel leads the negative channel in time, which is called positive skew direction.
- 8. Record the maximum intra-pair skew for the given V_{TERM} , frequency and skew direction.
- 9. Set the differential and common-mode intra-pair skews to 0ps.
- **10.** Increase the intra-pair skew of differential signal and common-mode signal by the same amount to the maximum where error appears on the display. Make the positive channel lags the negative channel in time, which is called negative skew direction.
- 11. Record the maximum intra-pair skew for the given V_{TERM} , frequency and skew direction.
- **12.** If the all recorded maximum intra-pair skew value is larger than the spec limit, then PASS. Otherwise FAIL

5.1.1.4: Jitter Tolerance Test (CTS 1.X) – in Normal Mode (CTS 2.0)

This MHL Receiver test confirms that the dongle device can tolerate the maximum clock and data jitter amounts allowed by the specification.

Required Test Equipment

In addition to the DUT and high-bandwidth digital oscilloscope, you will need the following:

- MHL Signal Generator: AWG7122C with option 01, 02 or 06 and 08 and Option SDX with Direct Synthesis capability, to simulate Cable emulator effect and Rise time filter effect.
- Rise time Filter: 2 Picosecond Pulse labs 120PS
- Test Fixture: 1 set TF-MHL-TPA-R-WOSO
- DC Power Supply: PWS4205 or PWS2185
- Bias Tees: 2 Mini Circuits Bias Tees ZX85–12G-S+
- CBUS Source Board: Simplay Labs MHL Rx/Tx Analyzer SL-860 (Sink DUT Port) or SOSI Tektronix board
- A/V Display

Make the connection as shown in <u>Dongle – Input Signal Single-Ended Voltage Level Tolerance Test</u> (see page 179) after calibration is done.

Measurement Algorithm

The below procedure is fully automated by Tektronix MHL Compliance Software (Option MHD).

- Connect the equipment as shown in <u>Single-Ended Signals Calibration Setup for Dongle Tests (see page 180)</u> and as shown in <u>Differential & Common-Mode Signals Calibration Setup for Dongle Tests</u> (see page 180). Set V_{TERM} = 3.3V, AWG Ch1 transmitting MHL+ and AWG Ch2 transmitting MHL-signals. Ensure the Bias Tees are used at the output of the AWG channels along with 120ps filters.
- 2. Calibrate the MHL Signal Generator AWG7122C output for the following settings.
 - a. Frequency: Highest frequency supported by the Dongle DUT
 - **b.** Pattern: MHL Gray Ramp data streams
 - **c.** Rise/fall times:
 - Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal

600ps (20% - 80%)

- Less than or equal to 2.25Gbps

Differential signal 200ps (20% - 80%), Common-mode signal

600ps (20% - 80%)

- d. Swing voltages: Differential signal 800mV, Common-mode signal 360mV
- e. DC level of the output single-ended signal: V_{TERM} 540mV
- **3.** Set the clock jitter frequency to 10MHz and the data jitter frequency to 500KHz. Inject clock jitter and data jitter with TP1 maximum amount specified in MHL Spec for the given frequency. 4. Adjust the differential signal swing to the marginal TP1 eye opening specified in MHL Spec for the given frequency.
- **4.** Adjust the differential signal swing to the marginal TP1 eye opening specified in MHL Spec for the given frequency.
- 5. Connect the equipment as shown in <u>Dongle Input Signal Single-Ended Voltage Level Tolerance Test</u> (see page 179) with the CBus Source board connected to the Tektronix fixture CBus port. Provide VBus if DUT is unpowered dongle. Do not provide VBus if DUT is powered dongle.
- **6.** Turn on the DUT and enable the MHL mode through Device Discovery and CBUS Information Exchange with the CBUS Source board.
- 7. Examine the output of the Dongle DUT on the Display.
- 8. Record error on the Display if any for the given V_{TERM} , clock frequency, jitter frequency and clock edge location.
- **9.** Change the common-mode clock edge location by 0.1Tbit step with respect the differential data edge for 10 times and examine the Display at each step.

- 10. Record error on the Display if any for the given V_{TERM} , clock frequency, jitter frequency and clock edge location.
- 11. Repeat the above test for clock jitter frequency 7MHz and data jitter frequency 1MHz.
- 12. Repeat the above test for the minimum resolution supported by the DUT.
- 13. If there is no error on the display in all recorded results, then PASS. Otherwise FAIL.

5.1.1.9: Jitter Tolerance Test in Packed Pixel Mode

NOTE. This test is only available in CTS 2.0.

This test confirms that the dongle device can tolerate the maximum clock and data jitter amounts allowed by the specification in Packed Pixel Mode.

For this test, use the same Required Test Equipment and Measurement Algorithm as

5. 1. 1. 4 Jitter Tolerance Test in Normal Mode (see page 186)

MHL Data Eye Diagram Test - Mask Movement

When performing the MHL Data Eye Diagram test (Transmitter), if the test fails due to mask hits, you are presented with a dialog box to enter a timing value that will be used to shift the Mask horizontally, thus allowing the test to pass. You will have up to three opportunities to adjust the mask position. If after three attempts, and the test still fails due to any mask hits, the test will stop and report the test as failed.

The first message you see when the Eye Diagram tests fails due to mask hits provides a short description of what you need to adjust the mask position.

Information							
1	Measure the Delta De-skew value(Ps) used for moving the mask in the data eye diagram. To measure the Delta De-skew value a. Place the vertical cursors on DPOJET plot, one at the mask vertex(x1) and other(x2) at a point where the mask needs to be moved. b. Note the delta cursor reading on the eye and enter this as Delta De-skew value. Please refer to the online help for detailed procedure.						
	ок						

After you select OK, the Measure the Deskew Value pop-up dialog box displays. Once you determine how the amount of time (in pico seconds) to shift the mask horizontally, enter the value here. To determine the amount of deskew time, use the procedure Moving the Mask (see page 190).

vieasure the Deskew	value	
Enter the measured Delta mask in the data eye diag	Deskew value(Ps ram.) for moving the
Delta Deskew Value(Ps)	-65	
	\frown	

Moving the Mask

Before you enter a value in the Delta Deskew Value pop-up dialog box, you first need to measure the amount of timing shift required to move the mask horizontally.

1. Observe the eye diagram plot and locate the mask hits.

In the example, you can see the mask hits. You can move the mask towards the right or left horizontally by entering the positive or negative de-skew values appropriately.

2. Using the delta cursors, measure the amount of time you want to shift the mask. In the example, we've measured that we want to shift the mask -65 ps.

3. Enter the Delta Deskew Value in the pop-up dialog box and click OK. This causes the MHL TekExpress solution to perform the test again.

Observe that the Eye Diagram is rendered again after shifting the mask. You can see that there are no mask hits.

NOTE. If the test fails again due to mask hits, you will have two more attempts (three total) to adjust the position of the mask.

4. Viewing the Results screen shows that the MHL Data Eye Diagram test now passes.

V TekExp	ress MHL - (Untitled)*						Options	
	Overall Test Result					P	Preferences	Ϊ.
Catura	Test Name	Pass/Fail	Details	TBit	VTerm	Value	Margin	
Status	3.1.1.12 MHL Data Eye Diagram	🦁 Pass	Data Jitter at VTerm(Min) at 74.25	448.93 ps	3.135 V	125.0884	98.4721	
Results	3.1.1.12 MHL Data Eye ⊕ Diagram	📀 Pass	Mask hits at VTerm(Min) at 74.25	448.93 ps	3.135 V	0	0	(
Reports								

See also

■ 3. 1. 1. 12: MHL Data Eye Diagram Test (see page 166)

Map the My TekExpress Folder

Map the shared My TekExpress folder as X: (X drive) on all instruments used in test setup running Microsoft Windows Operating System. The My TekExpress folder has the shared name format <domain><user ID>My TekExpress. Or, if the instrument is not connected to a domain, then the share name format is <instrument name><user ID> My TekExpress. This shared folder is used to save the waveform files and is used during any other file transfer operations.

To map the My TekExpress folder on the instruments, follow these steps:

- 1. Open Windows Explorer.
- 2. From the Windows Explorer menu, click Computer.

- 3. In the menu bar, click Map network drive.
- 4. Select the Drive letter as X: (if there is any previous connection on X:, disconnect it first through Tools > Disconnect Network drive menu of Windows Explorer. Windows 7 users: if you do not see the Tools menu, press the Alt key).
- **5.** In the Folder field, enter the remote My TekExpress folder path (for example, \\192.158.97.65\My TekExpress)
- 6. Click Finish.

To determine the IP address of the instrument where the My TekExpress folder exists, do the following:

- 1. On the instrument where the My TekExpress folder exists, click Start and select Run.
- 2. Type "cmd" and then press Enter.
- 3. At the command prompt, type "ipconfig" and then press Enter.

Index

Symbols and Numbers

5.1.1.9, 188

A

Acquire Status, 90 Acquisition source selecting live waveforms as. 73 selecting prerecorded waveforms as, 72 Acquisitions, 67 Activating the license, 34 Advanced View, 52 Algorithms, 153 Common-mode Output Swing Voltage Test, 155 Common-mode Rise and Fall Times, 156 Differential Intra-Pair Skew-TSKEW DF, 165 Differential Output Swing Voltage-VDF SWING, 163 Differential Rise and Fall Times-TR DF, TF DF, 164 MHL Clock Duty Cycle Test 24-Bit or Packed Pixel Mode, 158 MHL Clock Jitter Test, 159 MHL Data Eye Diagram Parameters, 166 Single-Ended High Level Voltage, 167 Single-ended Low Level Voltages-**VSE LOW**, 161 Standby Output Voltage Test, 153 Analysis Status, 90 Appending reports, 97 Application controls, 39 Application window, 39

ApplicationStatus(), 146 Auto Scroll, 90

С

CheckSessionSaved(), 151 Clear Log, 90 Clearing test results displayed, 95 Client Proxy Object, 107 Clock Settings, 79 Commands ApplicationStatus(), 145 CheckSessionSaved(), 151 Connect(), 122 Disconnect(), 152 GetAcquireParameter(), 129 GetAnalyzeParameter(), 129 GetCurrentStateInfo(), 145 GetDUTId(), 125 GetGeneralParameter(), 129 GetPassFailStatus(), 148 GetReportParameter(), 148 GetResultsValue(), 148 GetResultsValueForSubMeasurements(), 148 GetTimeOut(), 145 LockSession(), 123 Pixel Mode, 138 QueryStatus(), 145 RecallSession(), 151 Run(), 143 SaveSession(), 151 SaveSessionAs(), 151 selecting a channel, 112 SelectSuite(), 138 SelectTest(), 131 SendResponse(), 145 SetAcquireParameter(), 126 SetAnalyzeParameter(), 126 SetDUTId(), 125 SetGeneralParameter(), 126 SetTimeOut(), 145 setting Resolution, 139

setting Termination Source method, 141 setting Termination Voltage, 142 SetVerboseMode(), 124 Stop(), 143 TransferImages(), 148 TransferReport(), 148 TransferWaveforms(), 148 UnlockSession(), 152 Commands List, 116 Comments, 52 Common-mode Output Swing Voltage Test algorithm, 155 Common-mode Rise and Fall Times algorithm, 156 Compliance Mode, 74 Compliance View, 52 Configuring tests, 74 Connect(), 122 Connected instruments selecting, 74 viewing, 37 Connection requirements, 18

D

Default directory, 27 Default test setup, 101 Deskew value, 189 Device options, 52 Device Profile, 52 Differential Intra-Pair Skew-TSKEW DF algorithm, 165 Differential Output Swing Voltage-VDF SWINGalgorithm, 163 Differential Rise and Fall Times-TR DF, TF DF algorithms, 164 Directories, 27 Disconnect(), 152

DSP Filter 8 GHz, 74 DUT settings, 47

E

Edge Trigger Level, 67 Email Notifications, 87 Email Settings, 37 Equipment setup, 14 Exiting the application, 43 Eye diagram test, 189 Eye diagram to mask alignment, 189

F

File name extensions, 29 Fixtures, 31 Flowchart for Client Programmatic Interface, 109

G

GetAcquireParameter(), 129 GetAnalyzeParameter(), 129 GetCurrentStateInfo(), 147 GetDutId(), 125 GetGeneralParameter(), 129 GetPassFailStatus(), 148 GetReportParameter(), 149 GetResultsValue(), 148 GetResultsValueForSubMeasurements(), 148 GetTimeOut(), 145

Installing the software, 32 Instrument Control Settings, 37 Instrument Control Settings dialog box, 37 Instruments searching for, 37 selecting, 74 viewing connected, 37 Interface, 105 Interface error codes, 144

Κ

Keep On Top, 35

L

License, 35 License activation, 34 Limits Editor, 74 Live waveforms, 73 LockSession(), 123 Log View, 89

Μ

Mapping My TekExpress folder, 191 Mask alignment, 189 Mask movement, 189 Measurement parameters, 83 Menus, 39 Options, 39 Preferences, 95 Message History, 90 MHL Application Commands, 116 MHL Clock Duty Cycle Test 24-Bit or Packed Pixel Mode algorithm, 158 MHL Clock Jitter Test algorithm, 159 MHL Data Eye Diagram algorithms, 166 MHL data eye diagram to mask alignment, 189 Mode selecting, 74 My TekExpress folder, 85 mapping, 191

0

Options Menu, 39 Oscilloscope setup, 153 Oscilloscopes supported, 31 Overview, 3

Ρ

Panels Setup, 47 Parameters, 83 Pixel Mode, 52 Pixel Mode test, 158 Population Count, 67 Pre-run check list, 85 Preferences Menu, 95 Prerecorded waveform files, 72 Probe parameters, 67 Probe setup illustration, 18 Probes, 31 Program example, 112 Programmatic Interface, 105

Q

QueryStatus(), 146

R

RecallSession(), 151 Record Length, 79 Ref Levels, 79 Remote Proxy Object, 107 Report Options, 97 Report sections, 97 Reports appending, 97 naming, 97 viewing, 97 Resolution controls, 52 Results Panel using, 95 Run(), 143

S

Sample Rate, 79 SaveSession(), 151 SaveSessionAs(), 151 Saving Log files, 90 Saving reports, 97 Scope settings, 79 SelectSuite(), 138 SelectTest(), 131 SendResponse(), 147 Server, 105 Session files, 28 Session folders, 28 SetDutId(), 125 SetGeneralParameter(), 126 SetTimeOut(), 145 Setup Panel, 47 SetVerboseMode(), 124 Show Detailed Log, 90 Signal Path Compensation (SPC), 87 Single-Ended High Level Voltage algorithm, 180 Single-Ended Low Level Voltages-VSE LOWalgorithm, 161 Specifications, 3 Standby Output Voltage Test algorithm, 153 Status Panel using, 89 Stop(), 143 System requirements, 31

T

Technical support, 1 TekExpress Client, 105 TekExpress Client requirements, 105 TekExpress Server, 105 Termination source, 52 Test groups, 62 Test limits changing, 74 **Test Reports** selecting options, 97 viewing, 97 Test results viewing, 95 Test Results Summary, 95 Test setup files, 28 Test setups, 101 creating based on existing, 102 deleting, 103 recalling, 102 saving, 101 Test Status, 89 Tests configuring, 74 selecting, 62 TestStand Client example, 116 TransferImages(), 150

TransferReport(), 149 TransferWaveforms(), 150

U

UnlockSession(), 152 Untitled Session folder, 85 User Comments including in test reports, 97 viewing in reports, 97 User Defined Mode, 78

V

Version, 35 Vertical Scale, 67 Vertical Setup, 79 View option, 52

W

Waveforms acquiring live, 73 using prerecorded, 72