
TekVISA
Programmer Manual

P077014002
077-0140-02

TekVISA
Programmer Manual

Register now!
Click the following link to protect your product.
tek.com/register

P077014002
077-0140-02 December 2023

https://www.tek.com/product-registration

Copyright © 2023, Tektronix. 2023 All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers,
and are protected by national copyright laws and international treaty provisions. Tektronix products are covered by U.S. and foreign
patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and
price change privileges reserved. All other trade names referenced are the service marks, trademarks, or registered trademarks of their
respective companies.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Tektronix, Inc.
14150 SW Karl Braun Drive
P.O. Box 500
Beaverton, OR 97077
US

For product information, sales, service, and technical support visit tek.com to find contacts in your area. For warranty information visit
tek.com/warranty.

HTTP://www.tek.com
https://www.tek.com/warranty-status-search

Contents
Preface..9

Who should read this manual.. 9
About this manual.. 9
Conventions... 9
Related manuals and information.. 10

Getting started...11
Product description...11
Terminology..13
What you need to get started...15

TekVISA installation.. 15
Operations summary...17
Operations...19

viAssertTrigger (vi, protocol).. 19
viBufRead (vi, buf, count, retCount)...20
viBufWrite (vi, buf, count, retCount)... 22
viClear (vi)..24
viClose (vi)... 25
viDisableEvent (vi, eventType, mechanism).. 26
viDiscardEvents (vi, eventType, mechanism).. 28
viEnableEvent (vi, eventType, mechanism, context)... 30
viEventHandler (vi, eventType, context, userHandle).. 32
viFindNext (findList, instrDesc).. 34
viFindRsrc (sesn, expr, findList, retCount, instrDesc).. 35
viFlush (vi, mask)... 39
viGetAttribute (vi, attribute, attrState)...41
viGpibCommand (vi, buf, count, retCount)...42
viInstallHandler (vi, eventType, handler, userHandle)..43
viLock (vi, lockType, timeout, requestedKey, accessKey)..45
viOpen (sesn, rsrcName, accessMode, timeout, vi)...48
viOpenDefaultRM (sesn)..50
viParseRsrc (sesn, rsrcName, intfType, intfNum).. 51
viParseRsrcEx (sesn, rsrcName, intfType, intfNum, rsrcClass, unaliasedExpandedRsrcName, aliasIfExists)................... 53
viPrintf (vi, writeFmt, <arg1, arg2, ...>)...54
viQueryf (vi, writeFmt, readFmt, <arg1, arg2,...>)..60
viRead (vi, buf, count, retCount).. 61
viReadAsync (vi, buf, count, jobId).. 64
viReadSTB (vi, status)... 67
viReadToFile (vi, fileName, count, retCount)..69
viScanf (vi, readFmt, <arg1, arg2,...>)... 71
viSetAttribute (vi, attribute, attrState)... 76
viSetBuf (vi, mask, size)...78
viSPrintf (vi, buf, writeFmt, <arg1, arg2,...>).. 79
viSScanf (vi, buf, readFmt, <arg1, arg2,...>)..81
viStatusDesc (vi, status, desc)...83

Contents

TekVISA Programmer Manual 5

viTerminate (vi, degree, jobId)..84
viUninstallHandler (vi, eventType, handler, userHandle)... 85
viUnlock (vi)... 87
viUsbControlIn (vi, bmRequestType, bRequest, wValue, wIndex, wLength, buffer, retCount)...88
viUsbControlOut (vi, bmRequestType, bRequest, wValue, wIndex, wLength, buffer)... 91
viVPrintf (vi, writeFmt, params)..93
viVQueryf (vi, writeFmt, readFmt, params).. 95
viVScanf (vi, readFmt, params)... 97
viVSPrintf (vi, buf, writeFmt, params)...99
viVSScanf (vi, buf, readFmt, params).. 100
viWaitOnEvent (vi, inEventType, timeout, outEventType, outContext).. 102
viWrite(vi, buf, count, retCount)..104
viWriteAsync (vi, buf, count, jobId)...106
viWriteFromFile (vi, fileName, count, retCount)... 109
viPxiReserveTriggers(vi, cnt, trigBuses, trigLines, failureIndex)...111

Attributes summary..113
Attributes... 116

VI_ATTR_ASRL_AVAIL_NUM..116
VI_ATTR_ASRL_BAUD... 116
VI_ATTR_ASRL_CTS_STATE... 116
VI_ATTR_ASRL_DATA_BITS.. 117
VI_ATTR_ASRL_DCD_STATE...117
VI_ATTR_ASRL_DSR_STATE...118
VI_ATTR_ASRL_DTR_STATE... 118
VI_ATTR_ASRL_END_IN.. 119
VI_ATTR_ASRL_END_OUT.. 119
VI_ATTR_ASRL_FLOW_CNTRL...120
VI_ATTR_ASRL_PARITY.. 121
VI_ATTR_ASRL_REPLACE_CHAR.. 121
VI_ATTR_ASRL_RI_STATE.. 122
VI_ATTR_ASRL_RTS_STATE... 122
VI_ATTR_ASRL_STOP_BITS... 123
VI_ATTR_ASRL_XOFF_CHAR... 123
VI_ATTR_ASRL_XON_CHAR... 124
VI_ATTR_BUFFER.. 124
VI_ATTR_EVENT_TYPE... 124
VI_ATTR_GPIB_PRIMARY_ADDR... 125
VI_ATTR_GPIB_READDR_EN..125
VI_ATTR_GPIB_SECONDARY_ADDR... 126
VI_ATTR_GPIB_UNADDR_EN..126
VI_ATTR_INTF_INST_NAME.. 127
VI_ATTR_INTF_NUM.. 127
VI_ATTR_INTF_TYPE... 128
VI_ATTR_IO_PROT...128
VI_ATTR_JOB_ID.. 129
VI_ATTR_MAX_QUEUE_LENGTH... 129
VI_ATTR_OPER_NAME.. 129
VI_ATTR_RD_BUF_OPER_MODE... 130
VI_ATTR_RET_COUNT...130

Contents

6

VI_ATTR_RM_SESSION... 131
VI_ATTR_RSRC_IMPL_VERSION..131
VI_ATTR_RSRC_LOCK_STATE... 132
VI_ATTR_RSRC_MANF_ID...132
VI_ATTR_RSRC_MANF_NAME..133
VI_ATTR_RSRC_NAME.. 133
VI_ATTR_RSRC_SPEC_VERSION.. 134
VI_ATTR_SEND_END_EN.. 134
VI_ATTR_STATUS...135
VI_ATTR_SUPPRESS_END_EN.. 135
VI_ATTR_TCPIP_ADDR..136
VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB.. 136
VI_ATTR_TCPIP_HISLIP_OVERLAP_EN...136
VI_ATTR_TCPIP_HISLIP_VERSION.. 136
VI_ATTR_TCPIP_HOSTNAME..137
VI_ATTR_TCPIP_IS_HISLIP... 137
VI_ATTR_TCPIP_KEEPALIVE.. 137
VI_ATTR_TCPIP_NODELAY... 138
VI_ATTR_TCPIP_PORT.. 138
VI_ATTR_TERMCHAR.. 139
VI_ATTR_TERMCHAR_EN... 139
VI_ATTR_TMO_VALUE... 140
VI_ATTR_TRIG_ID.. 140
VI_ATTR_TCPIP_IS_HISLIP... 141
VI_ATTR_USB_INTFC_NUM.. 141
VI_ATTR_USB_MAX_INTR_SIZE... 141
VI_ATTR_USB_PROTOCOL... 142
VI_ATTR_USB_RECV_INTR_DATA..142
VI_ATTR_USB_RECV_INTR_SIZE...142
VI_ATTR_USB_SERIAL_NUM.. 143
VI_ATTR_USER_DATA... 143
VI_ATTR_WR_BUF_OPER_MODE.. 144

Events... 145
VI_EVENT_EXCEPTION...145
VI_EVENT_IO_COMPLETION.. 145
VI_EVENT_SERVICE_REQ.. 146

Programming examples.. 147
Introduction.. 147
Compiling and linking examples.. 147
Opening and closing sessions... 148
SIMPLE.CPP example...149
Finding resources.. 149

SIMPLEFINDRSRC.CPP example... 150
Using attribute matching... 151
FINDRSRCATTRMATCH.CPP example...151

Setting and retrieving attributes... 152
ATTRACCESS.CPP example .. 153

Basic Input/Output... 154
Reading and Writing Data...154

Contents

TekVISA Programmer Manual 7

Synchronous Read/Write.. 155
Extract from SIMPLE.CPP Example ..155
RWEXAM.CPP Example.. 155
Asynchronous Read/Write.. 156
Status/Service request..157

Reading and writing formatted data... 157
FORMATIO.CPP example.. 158
Resizing the formatted I/O buffers.. 162
BUFFERIO.CPP Example.. 162
Flushing the formatted I/O buffer.. 164
Buffered I/O operations...164
Variable list operations..164
Controlling the serial I/O buffers... 164

Handling events... 165
SRQWAIT.CPP example...165
Callback mechanism...167
SRQ.CPP example... 168
Exception handling... 170
Generating an Error condition on asynchronous operations...171

Locking and unlocking resources...171
Locking types and access privileges...171
EXLOCKEXAM.CPP example.. 172
Testing exclusive locking.. 173
Lock sharing... 173
Acquiring an exclusive lock while owning a shared lock...174
Nested locks... 174
SHAREDLOCK.CPP example.. 174
Testing shared locking.. 176

Building a graphical user interface...177
Appendix A: VISA data type assignments...179
Appendix B: Completion and error codes... 186
Glossary.. 189

Contents

8

Preface
Who should read this manual
This manual is used for both reference and tutorial purpose. It is intended for use by Tektronix instrumentation end users and application
programmers who wish to develop or modify:

• VISA-compliant instrument driver software.
• Applications that use VISA-compliant instrument driver software.

About this manual
This programming manual describes TekVISA, the Tektronix implementation of the Virtual Instrument Software Architecture (VISA) Library,
an interface-independent software interface endorsed by the VXIplug&play Systems Alliance. The manual is organized as follows:

• The Preface and Getting Started sections briefly cover the audience and conventions for this guide, present overview concepts,
summarize TekVISA features and applications, and explain how to configure TekVISA resources.

• The Reference section presents TekVISA operations, attributes, and events in alphabetical order.

• The Operations Summary chapter summarizes the VISA operations implemented by Tektronix.
• The Operations chapter describes each VISA operation including its syntax and sample usage.
• The Attributes Summary chapter summarizes the VISA attributes implemented by Tektronix.
• The Attributes chapter describes each VISA attribute including its syntax and usage.
• The Events chapter describes each VISA event implemented by Tektronix including its syntax and usage.

• The Programming Examples section contains short programs that illustrate usage of VISA operations, attributes, and events to
accomplish specific tasks.

• Appendices contain summary information for quick reference.

• The VISA Data Type Assignments appendix lists VISA data types in alphabetical order.
• The Completion and Error Codes appendix lists operation completion codes and error codes in alphabetical order.

• A Glossary and Index appear at the end of the manual.

Conventions
This manual makes use of certain notational conventions and typefaces in distinctive ways, as summarized in Table i.

Table 1: Typographic conventions

Typeface Meaning Example
italics Used to introduce terms or to specify variables for

which actual values should be substituted.
A common I/O library called the Virtual Instrument
Software Architecture (VISA)

The requestedKey will be copied into the user buffer
referred to by the access Key.

boldface Used to emphasize important points or to denote
exact characters to type or buttons to click in step-by-
step procedures.

The viFindRsrc() operation matches an expression
against the resources available for a particular
interface.

Click OK.

Table continued…

Preface

TekVISA Programmer Manual 9

Typeface Meaning Example
NOTE Used to call attention to notes or tips in text.

Note: Read this carefully

<item1, item2, ...> This notation is used to designate a variable list of
one or more items separated by commas.

viScanf (vi, readFmt, <arg1,
arg2, ...>)

Code This font is used to designate blocks of code. *result = m_ViStatus;
Menu > Submenu This notation is used to designate a series of

cascading menus.

The example here means: from the File menu, choose
Open.

Choose File > Open.

Related manuals and information
Refer to the following manuals for information regarding related products, manuals, and programming specifications.

• This programming manual resides in Adobe Acrobat format on the TekVISA Product Software CD.
• The AD007 GPIB-LAN Adapter User Manual (071-0245-XX) provides related information if you are controlling your instrumentation

from a remote PC over an Ethernet GPIB-LAN connection. This guide is located on the AD007 Product Software CD.
• Refer to the Online Help and Programmer Online Guide for information to use and program each instrument.
• General information and specifications for Virtual Instrument Software Architecture (VISA) are available from the web site of

the VXIplug&play System Alliance at ivifoundation.org/specifications/default.aspx. The following document relates to the Tektronix
implementation of VISA:

Note: Some of the latest VISA specifications are now available at the IVI Foundation web site at www.ivifoundation.org.

• VPP-4.3: The VISA Library Revision 3.0. This specification is intended to be used in conjunction with the VPP-3.X specifications
supporting instrument driver development.

• VPP-4.3.5: VISA Shared Components.
• All related specifications for the VXIplug&play are available at ivifoundation.org/specifications/default.aspx .
• All related specifications for the IVI are available at www.ivifoundation.org.

Preface

10

https://ivifoundation.org/specifications/default.aspx
http://www.ivifoundation.org
https://ivifoundation.org/specifications/default.aspx
http://www.ivifoundation.org

Getting started
Product description
Test and measurement applications require some kind of I/O library to communicate with test instrumentation. As a step toward
industry-wide software compatibility, the VXIplug&play Systems Alliance developed a common I/O library called the Virtual Instrument
Software Architecture (VISA). It provides a common standard for software developers so that software from multiple vendors, such as
instrument drivers, can run on the same platform.

An instrument driver is a library of functions that handles the details of controlling and communicating with a specific instrument such as a
Tektronix oscilloscope. Instrumentation end users have been writing their own instrument drivers for years.

This manual describes TekVISA, the Tektronix implementation of the VISA Application Programming Interface (API). TekVISA is industry-
compliant software, available with selected Tektronix instrument models, for writing interoperable instrument drivers in a variety of
Application Development Environments (ADEs).

TekVISA implements a subset of Version 3.0 of the VISA specification for controlling GPIB, USB, and serial (RS-232) instrument interfaces
locally or remotely via an Ethernet LAN connection. TekVISA provides the interface-independent functionality needed to control and access
the embedded software of Tektronix test and measurement equipment in the following ways:

• Using :

• Virtual GPIB software running locally on Windows-based instrumentsation
• Physical GPIB controller hardware
• Asynchronous serial controller hardware
• USB connection for USB instruments such as the TDS1000B and TDS2000B series
• TekLink hardware to TekLink-enabled instruments

• Supports 32-bit and 64-bit VISA Shared Components. The standard directory structure, environment variables, and registry entries are
per VISA Shared Components version 1.1.0.

• Over a Local Area Network (LAN) that uses VXI-11 protocol, TCP/IP Socket, and one of the following:

• An AD007 LAN-to-GPIB adapter to GPIB controller hardware
• An Ethernet connection together with VXI-11 server running on Windows-based instruments such as the TDS7000 and TDS/

CSA8000 Series Oscilloscopes
• An Ethernet connection together with Socket server running on Windows-based instruments such as the DPO/DSA7000 Series

Oscilloscopes.

Features and benefits
TekVISA offers the following features and benefits:

• Improves ease of use for end users by providing a consistent methodology for using instrument drivers from a variety of vendors
• Provides language interface libraries for programmers using multiple Application Development Environments as shown in Figure 1-1,

including:

• Microsoft C/C++
• \u0002 Microsoft Visual Basic
• \u0002 LabVIEW graphics software using the G language
• \u0002 MATLAB analysis software

• Provides an Instrument Manager utility for setting up and searching additional VISA resources
• Provides debugging utilities such as TalkerListener and CallMonitor
• Allows software installation on any number of PCs

Getting started

TekVISA Programmer Manual 11

Applications and connectivity supportedby TekVISA
TekVISA is beneficial in a variety of situations and applications:

• A single instrument driver can be used by multiple Application Development Environments.
• Instrument drivers from several vendors can be combined in a single user application.
• User programs running on Windows-based instrumentation can use TekVISA to control instrument operation via a virtual GPIB

software connection, without using any external GPIB hardware.
• User programs running on remote PCs networked toWindows-based instrumentation can use TekVISA to control instrument operation

via a virtual GPIB, VXI-11 server, and Socket server connection. No external GPIB-LAN hardware is needed. Only an Ethernet LAN
connection is required.

• User programs connected locally or remotely to other non-Windows-based Tektronix instrumentation can use TekVISA to control
instrument operation via a GPIB, USB, or serial (RS232) connection locally, or remotely via TCPIP directly or via a Tektronix AD007
GPIB-LAN adapter.

Figure 1: TekVISA Supports Multiple Development Environments

Getting started

12

Figure 2: TekVISA supports local and remote connectivity

Terminology
The VISA specification introduces a number of new terms. Refer to the Glossary at the end of this manual for a complete list of terms and
definitions. Some key terms are discussed in the following paragraphs and illustrated in Figure 3 on page 14 .

Resources, INSTR resource, SOCKET resource, and sessions
VISA defines an architecture consisting of many resources that encapsulate device functionality. In VISA, every defined software module
is a resource. In general, the term resource is synonymous with the word object in object-oriented architectures. For VISA, resource more
specifically refers to a particular implementation or instance, in object-oriented terms, of a resource class, which is the definition for how to
create a particular resource.

A specialized type of resource class is a VISA instrument control (INSTR) resource class, which defines how to control a particular device.
An INSTR resource class encapsulates the various operations for a particular device together (reading, writing, triggering, and so on) so
that a program can interact with that device through a single resource. TekVISA supports many kinds of devices associated with the INSTR
resource class: GPIB, ASRL (serial) devices, USB, TCPIP/LAN, and TekLink.

The TCP/IP Socket (SOCKET) Resource encapsulates the operations and properties of the capabilities of a raw network socket
connection using TCP/IP. A VISA Socket Resource like the INSTR resource, starts with the basic operations and attributes of the VISA
Resource Template. The SOCKET Resource exposes the capability of a raw network socket connection over TCP/IP

Getting started

TekVISA Programmer Manual 13

Applications that use VISA can access device resources by opening sessions to them. A session is a communication path between a
software element and aresource. Every session in VISA is unique and has its own life cycle. VISAdefines a locking mechanism to restrict
access to resources for special circumstances.

Operations, Attributes, and Events
After establishing a session, an application can communicate with a resource by invoking operations associated with the resource or by
updating characteristics of resources called attributes. Some attributes depict the instantaneous state of the resource and others define
changeable parameters that modify the behavior of resources. A VISA system also allows information exchange through events.

The Resource manager
VISA Resource Manager is the name given to the part of VISA that manages resources. This management includes support for opening,
closing, and finding resources; setting and retrieving resource attributes; generating events on resources; and so on.

The VISA Resource Manager provides access to all resources registered with it. It is therefore at the root of a subsystem of connected
resources. Currently, one Resource Manager is available by default after initialization. This is called the Default Resource Manager. This
identifier is used when opening resources, finding available resources, and performing other operations on device resources.

Figure 3: Key VISA teriminology for INSTR resourse

Getting started

14

Figure 4: Key VISA Terminology for SOCKET Resource

Note: SOCKET connections do not support VISA Events. SOCKET connections automatically perform a viLock() of the interface
and cannot be shared like other VISA bus types.

Virtual instruments and virtual GPIB
A virtual instrument is a name given to the grouping of software modules (VISA resources with any associated or required hardware) to
give the functionality of a traditional stand-alone instrument. Within VISA, a virtual instrument is the logical grouping of any of the VISA
resources. TekVISA supports USB, ASRL (serial) and GPIB virtual instruments, which work with accompanying USBTMC, RS-232 and
GPIB hardware respectively.

In addition, TekVISA includes a specialized type of GPIB resource called virtual GPIB. User programs running on oscilloscopes with
Windows-based instrumentation, or running on a remote PC connected by LAN to such an instrument, can access the embedded
instrument software by using a virtual GPIB software connection, without the need for any GPIB controller hardware or cables.

What you need to get started

TekVISA installation
The software installation includes a utility to help you configure TekVISA resources. The VISA Instrument Manager allows you to detect
USB, GPIB, and serial (ASRL) resource assignments, and to add or remove remote hosts (such as VXI-11 or Socket clients connected by
Ethernet LAN or by an AD007 adapter and associated GPIB hardware).

Note: If you are connecting to a network just to print screen hardcopy data, you do not need to install or configure TekVISA
software.

TekVISA comes installed on current Tektronix MS-Windows oscilloscopes as part of the Product Software.

To install TekVISA software on a PC connected to your Tektronix oscilloscope, follow the steps shown below on Table .

Table 2: Installing TekVISA Software on a PC

Alternative Locations for Finding TekVISA Software Instructions for Installing TekVISA Software on a PC
The product software CD for your MS-Windows oscilloscope In your MS-Windows computer, select Start > Run, browse the CD

to the TekVISA folder, and run setup.exe.
Table continued…

Getting started

TekVISA Programmer Manual 15

Alternative Locations for Finding TekVISA Software Instructions for Installing TekVISA Software on a PC
The TDSPCS1 OpenChoice PC Communications Software CD Follow the instructions in the installation wizard.
The OpenChoice Solutions Software Developers’ Kit CD Click on the Developers’ Kit browser button for Software Drivers

and then for TekVISA
The current TekVISA installation download from the Tektronix Web
site

Unzip the downloaded file in a temporary directory of your choice
and run setup.exe.

The IVI foundation VISA shared components will get installed as
part of the TekVISA installation

Note: If you have already installed TekVISA from an earlier version of the Tektronix Software Solutions CD or with Wavestar, you
should uninstall that version first, and then reinstall TekVISA from the most recent source.

The TekVISA Configuration Utility
Included with the TekVISA installation is the TekVISA Instrument Manager utility, which lets you find resource assignments and add or
remove network hosts (instruments). Once an instrument is added to the TekVISA configuration, you can communicate with it by using a
VISA compliant instrument driver.

To run the TekVISA Instrument Manager utility, you click on the TekVISA resource maanger icon in the system tray shown in Figure
4 on page 15. Alternatively, you can select, Start > Programs > TekVISA > OpenChoice Instrument Manager.

Figure 5: System tray

Getting started

16

Operations summary
The following table summarizes Tektronix VISA operations by category.

Table 3: Table of VISA operations by category

Operation Description
Opening and closing sessions, Events, and Find lists
viOpenDefaultRM Return a session to the Default Resource Manager
viOpen Open a session to the specified resource
viClose Close the specified session, event, or find list
Finding resources
viFindRsrc Find a list of resources associated with a specified interface
viFindNext Return the next resource from the find list
viParseRsrc Parses a resource string to get the interface information
Setting and retrieving attributes
viGetAttribute Retrieve the state of an attribute for the specified session, event, or find list
viSetAttribute Set the state of an attribute for the specified session, event, or find list
viStatusDesc Retrieve a user-readable description of the specified status code
Reading and writing basic data
viWrite Write data synchronously to a device from the specified buffer
viWriteAsync Write data asynchronously to a device from the specified buffer
viWriteFromFile Take data from a file and write it to a device synchronously
viRead Read data synchronously from a device into the specified buffer
viReadAsync Read data asynchronously from a device into the specified buffer
viReadToFile Read data synchronously from a device and store the transferred data in a file
viTerminate Terminate normal execution of an asynchronous read or write operation
Other basic I/O operations
viClear Clear a device
viAssertTrigger Assert software or hardware trigger
viReadSTB Read a status byte of the service request
Reading and writing formatted data
Formatted Buffer Operations
viBufWrite Write data synchronously to a device from the formatted I/O buffer
viBufRead Read data synchronously from a device into the formatted I/O buffer
viSetBuf Set the size of the formatted I/O and/or serial buffer(s)
viFlush Manually flush the specified buffer(s)
Formatted Write Operations * (See Note)
viPrintf Format and write data to a device using a variable argument list
viVprintf Format and write data to a device using a pointer to a variable argument list
Table continued…

Operations summary

TekVISA Programmer Manual 17

Operation Description
viSPrintf Format and write data to a user-specified buffer using a variable argument list
viVSPrintf Format and write data to a user-specified buffer using a pointer to a variable argument list
Formatted Read Operations * (See Note)
viScanf Read and format data from a device using a variable argument list
viVScanf Read and format data from a device using a pointer to a variable argument list
viSScanf Read and format data from a user-specified buffer using a variable argument list
viVSScanf Read and format data from a user-specified buffer using a pointer to a variable argument

list
Formatted Read/Write Operations * (See Note)
viQueryf Write and read formatted data to and from a device using a variable argument list
viVQueryf Write and read formatted data to and from a device using a pointer to a variable argument

list
Handling events
viEnableEvent Enable notification of a specified event
viDisableEvent Disable notification of the specified event using the specified mechanism
viDiscardEvents Discard all pending occurrences of the specified events for the specified mechanism(s) and

session
viWaitOnEvent Wait for an occurrence of the specified event for a given session
viInstallHandler Install callback handler(s) for the specified event
viUninstallHandler Uninstall callback handler(s) for the specified event
viEventHandler Prototype for handler(s) to be called back when a particular event occurs
Locking and unlocking resources
viLock Obtain a lock on the specified resource
viUnlock Relinquish a lock on the specified resource
Operations specific to interface type
viUsbControlIn Request arbitrary data from a USB device on the default control port
viUsbControlOut Send arbitrary data to a USB device on the default control port

Operations summary

18

Operations
The following Tektronix VISA operations are presented in alphabetical order.

viAssertTrigger (vi, protocol)
Usage
Asserts a software trigger for a GPIB, USBTMC, or serial device.

C Format
ViStatus viAssertTrigger (ViSession vi, ViUInt16 protocol)

Visual basic format
viAssertTrigger (ByVal vi As Long, ByVal protocol As Integer) As Long

Parameters
Table 4: viAssertTrigger() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
protocol IN Trigger protocol to use during assertion. Valid values

are:VI_TRIG_PROT_DEFAULT

Return values
Table 5: viAssertTrigger() Completion codes

Completion codes Description
VI_SUCCESS The specified trigger was successfully asserted to the device.

Table 6: viAssertTrigger() Error codes

Error Codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been

locked for this kind of access.
VI_ERROR_INV_PROT The protocol specified is invalid.
VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.
VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.
Table continued…

Operations

TekVISA Programmer Manual 19

Error Codes Description
VI_ERROR_BERRt Bus error occurred during transfer.
VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.
VI_ERROR_NCIC The interface associated with the given vi is not currently the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC are deasserted).
VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to attributes being set to an

inconsistent state).

C example

ViSession rm, vi;
ViUInt16 val;
if (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;
viAssertTrigger(vi, value);
viClose(rm);

Comments
The viAssertTrigger() operation will assert a software trigger as follows:

• For a GPIB device, the device is addressed to listen, and then the GPIB GET command is sent.
• For a serial device, if VI_ATTR_IO_PROT is VI_ASRL488, the device is sent the string “*TRG\n”. This operation is not valid for a serial

device if VI_ATTR_IO_PROT is VI_NORMAL.
• For GPIB, USBTMC, and serial software triggers, VI_TRIG_PROT_DEFAULT is the only valid protocol.

See also
Basic Input/Output

VI_ATTR_IO_PROT

viBufRead (vi, buf, count, retCount)
Usage
Writes data synchronously to a device from the formatted I/O buffer.

C format
ViStatus viBufWrite(ViSession vi, ViBuf buf, ViUInt32 count, ViPUInt32 retCount)

Visual basic format
viBufWrite(ByVal vi As Long, ByVal buf As String, ByVal count As Long, retCount As
Long) As Long

Operations

20

Parameters
Table 7: viBufWrite() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
buf OUT Represents the location of a data block to be sent to the device.
count IN Number of bytes to be written.
retCount OUT Represents the location of an integer that will be set to the number of bytes actually

transferred.

Return values
Table 8: viBufWrite() completion codes

Completion codes Description
VI_SUCCESS Operation completed successfully.

Table 9: viBufWrite() error codes

Error codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been

locked for this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.

If this operation returns this message, the write buffer for the specified session is cleared.

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

C example

ViSession rm, vi;
char buffer[256];
if (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;
if (viBufWrite(vi, (ViBuf) “*IDN?”, 5, VI_NULL) < VI_SUCCESS)
return;
viBufRead(vi, (ViBuf) buffer, sizeof(buffer), VI_NULL);
printf(”%s\n“, buffer);
viClose(rm);

Operations

TekVISA Programmer Manual 21

Comments
The viBufWrite() operation is similar to viWrite() and does not perform any kind of data formatting. It differs from viWrite() in that the data is
written to the formatted I/O write buffer—the same buffer used by viPrintf() and related operations—rather than directly to the device.

Note: You can intermix this operation with viPrintf() but you should not mix it with viWrite().

Table 10: Special value for retCount parameter with viBufWrite()

Value Description
VI_NULL If you pass this value, the number of bytes transferred is not returned. You may find this useful if you only

need to know whether the operation succeeded or failed.

See also
Reading and Writing formatted data

viBufWrite (vi, buf, count, retCount)

viBufWrite (vi, buf, count, retCount)
Usage
Writes data synchronously to a device from the formatted I/O buffer.

C format
ViStatus viBufWrite(ViSession vi, ViConstBuf buf, ViUInt32 count, ViPUInt32
retCount)

Visual basic format
viBufWrite(ByVal vi As Long, ByVal buf As String, ByVal count As Long, retCount As
Long) As Long

Parameters
Table 11: viBufWrite() Parameters

Name Direction Description
vi IN Unique logical identifier to a session.
buf OUT Represents the location of a data block to be sent to device.
count IN Number of bytes to be written.
retCount OUT Represents the location of an integer that will be set to the number of bytes

actually transferred.

Return values
Table 12: viBufWrite() Completion codes

Completion codes Description
VI_SUCCESS Operation completed successfully.

Operations

22

Table 13: viBufWrite() error codes

Error codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been

locked for this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.

If this operation returns this message, the write buffer for the specified session is cleared.

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

C example

ViSession rm, vi;
char buffer[256];
if (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;
if (viBufWrite(vi, (ViBuf) “*IDN?”, 5, VI_NULL) < VI_SUCCESS)
return;
viBufRead(vi, (ViBuf) buffer, sizeof(buffer), VI_NULL);
printf(”%s\n“, buffer);
viClose(rm);

Comments
The viBufWrite() operation is similar to viWrite() and does not perform any kind of data formatting. It differs from viWrite() in that the data is
written to the formatted I/O write buffer—the same buffer used by viPrintf() and related operations—rather than directly to the device.

Note: You can intermix this operation with viPrintf(), but you should not mix it with viWrite().

Table 14: Special Value for retCount Parameter with viBufWrite()

Value Description
VI_NULL If you pass this value, the number of bytes transferred is not returned. You may find this

useful if you only need to know whether the operation succeeded or failed.

See also
Reading and writing formatted data

viBufRead (vi, buf, count, retCount)

Operations

TekVISA Programmer Manual 23

viClear (vi)
Usage
Clears a device.

C Format
ViStatus viClear (ViSession vi)

Visual basic format
viClear (ByVal vi As Long) As Long

Parameters
Table 15: viClear() parameters

Name Direction Description
vi IN Unique logical identifier to a session.

Return values
Table 16: viClear() completion codes

Completion codes Description
VI_SUCCESS Operation completed successfully.

Table 17: viClear() error codes

Error Codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been

locked for this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT

_VIOL

Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT

_VIOL

Violation of raw read protocol occurred during transfer.

VI_ERROR_BERRt Bus error occurred during transfer.
VI_ERROR_NCIC The interface associated with the given vi is not currently the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC are deasserted).
VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to attributes being set to an

inconsistent state).

Operations

24

C Example

ViSession rm, vi;
if (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;
viClear(vi);
viClose(rm);

Comments
The viClear() operation performs an IEEE 488.1-style clear of the device.

• For GPIB systems, the Selected Device Clear command is used.
• For a serial device, if VI_ATTR_IO_PROT is VI_ASRL488, the device is sent the string “*CLS\n”. This operation is not valid for a

serial device if VI_ATTR_IO_PROT is VI_NORMAL.

Note: Invoking viClear() will also discard the read and write buffers used by the formatted I/O services for that session.

See also
Basic Input/Output

VI_ATTR_IO_PROT

viClose (vi)
Usage
Closes the specified session, event, or find list.

C format
ViStatus viClose (ViObject vi)

Visual basic format
viClose (ByVal vi As Long) As Long

Parameters
Table 18: viClose() Parameters

Name Direction Description
vi IN Unique logical identifier to a session, event, or find list.

Return values
Table 19: viClose() completion codes

Completion codes Description
VI_SUCCESS Session, event, or find list closed successfully.
Table continued…

Operations

TekVISA Programmer Manual 25

Completion codes Description
VI_WARN_NULL_OBJECT The specified object reference is uninitialized.

This message is returned if the value VI_NULL is passed to it.

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data structures corresponding to this session
or object reference.

C example

ViSession rm, vi;
if (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;
viClose(vi);
viClose(rm);

Comments
The viClose() operation closes a session, event, or a find list, and frees all data structures allocated for the specified vi.

See also
Opening and Closing Sessions, Events, and Find Lists

viOpen (sesn, rsrcName, accessMode, timeout, vi)

viOpenDefaultRM (sesn)

viDisableEvent (vi, eventType, mechanism)
Usage
Disables notification of the specified event using the specified mechanism.

C format
ViStatus viDisableEvent (ViSession vi, ViEventType eventType, ViUInt16 mechanism)

Visual basic format
viDisableEvent (ByVal vi As Long, ByVal EventType As Long, ByVal mechanism As
Integer) As Long

Operations

26

Parameters
Table 20: viDisableEvent() Parameters

Name Direction Description
vi IN Unique logical identifier to a session.
eventType IN Logical event identifier.
mechanism IN Specifies event handling mechanisms to be disabled. The queuing mechanism

is disabled by specifying VI_QUEUE, and the callback mechanism is disabled
by specifying VI_HNDLR or VI_SUSPEND_HNDLR. It is possible to disable both
mechanisms simultaneously by specifying VI_ALL_MECH.

Table 21: viDisableEvent() completion codes

Completion codes Description
VI_SUCCESS Event disabled successfully.
VI_SUCCESS_EVENT_DIS Specified event is already disabled for at least one of the specified mechanisms.

Table 22: viDisableEvent() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_INV_MECH Invalid mechanism specified.

C example

ViSession rm, vi;
if (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi) < VI_SUCCESS)
return;
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL);
// Do some processing here
// Cleanup and exit
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);
viClose(vi);
viClose(rm);

Comments
The viDisableEvent() operation disables servicing of an event identified by eventType for the mechanisms specified in mechanism.

This operation prevents new event occurrences from being added to the queue(s); however, event occurrences already existing in the
queue(s) are not flushed. Use viDiscardEvents() if you want to discard events remaining in the queue(s).

Operations

TekVISA Programmer Manual 27

Table 23: Special Values for eventtype parameter with viDisableEvent()

Value Description
VI_ALL_ENABLED_EVENTS Disable all events that were previously enabled. Allows a session to stop receiving all

events.

Table 24: Special values for mechanism parameter with viDisableEvent()

Value Description
VI_QUEUE Disable this session from receiving the specified event(s) via the waiting queue. Stops

the session from receiving queued events.
VI_HNDLR or VI_SUSPEND_HNDLR Disable this session from receiving the specified event(s) via a callback handler

or a callback queue. Specifying either VI_HNDLR or VI_SUSPEND_HNDLR stops
applications from receiving callback events.

VI_ALL_MECH Disable this session from receiving the specified event(s) via any mechanism. Disables
both the queuing and callback mechanisms.

See also
Handling Events

viEnableEvent (vi, eventType, mechanism, context)

viDiscardEvents (vi, eventType, mechanism)
Usage
Discards all pending occurrences of the specified events for the specified mechanism(s) and session.

C format
ViStatus viDiscardEvents (ViSession vi, ViEventType eventType, ViUInt16 mechanism)

Visual basic format
viDiscardEvents (ByVal vi As Long, ByVal EventType As Long, ByVal mechanism As
Integer) As Long

Parameters
Table 25: viDiscardEvents() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
eventType IN Logical event identifier.
mechanism IN Specifies event handling mechanisms to be discarded. The VI_QUEUE value

is specified for the queuing mechanism and the VI_SUSPEND_HNDLR value
is specified for pending events in the callback mechanism. To discard both
mechanisms simultaneously, specify VI_ALL_MECH.

Operations

28

Return values
Table 26: viDiscardEvents() completion codes

Completion codes Description
VI_SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue was empty

Table 27: viDiscardEvents() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_INV_MECH Invalid mechanism specified.

C example
// Cleanup and exit
status = viDiscardEvents(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);

Comments
The viDiscardEvents() operation discards all pending occurrences of the specified event types and mechanisms from the specified
session.

• The discarded event occurrences are not available to a session at a later time.
• This operation does not apply to event contexts that have already been delivered to the application.

Table 28: Special values for eventtype parameter with viDiscardEvents()

Value Description
VI_ALL_ENABLED_EVENTS Discard events of every type enabled for the given session. The information about all the event

occurrences which have not yet been handled is discarded. This operation is useful to remove
event occurrences that an application no longer needs.

Table 29: Special values for mechanism parameter with viDiscardEvents()

Value Description
VI_QUEUE Discard the specified event(s) from the waiting queue.
VI_HNDLR or VI_SUSPEND_HNDLR Discard the specified event(s) from the callback queue.
VI_ALL_MECH Discard the specified event(s) from all mechanisms.

See also
Handling Events

viWaitOnEvent (vi, inEventType, timeout, outEventType, outContext)

Operations

TekVISA Programmer Manual 29

viEnableEvent (vi, eventType, mechanism, context)
Usage
Enables notification of a specified event.

C format
ViStatus viEnableEvent (ViSession vi, ViEventType eventType, ViUInt16 mechanism,
viEventFilter context)

Visual basic format
viEnableEvent (ByVal vi As Long, ByVal EventType As Long, ByVal mechanism As
Integer, ByVal context As Long) As Long

Parameters
Table 30: viEnableEvent() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
eventType IN Logical event identifier.
mechanism IN Specifies event handling mechanisms to be enabled. The queuing mechanism

is enabled by specifying VI_QUEUE, and the callback mechanism is enabled
by specifying VI_HNDLR or VI_SUSPEND_HNDLR. It is possible to enable both
mechanisms simultaneously by specifying “bit--wise OR” of VI_QUEUE and one
of the two mode values for the callbackmechanism.

context IN VI_NULL

Return values
Table 31: viEnableEvent() completion codes

Completion codes Description
VI_SUCCESS Event enabled successfully.
VI_SUCCESS_EVENT_EN Specified event is already enabled for at least one of the specified mechanisms.

Table 32: viEnableEvent() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_INV_MECH Invalid mechanism specified.

Returned if called with the mechanism parameter equal to the “bit-wise OR” of
VI_SUSPEND_HNDLR and VI_HNDLR.

VI_ERROR_INV_CONTEXT Specified event context is invalid.
Table continued…

Operations

30

Error codes Description
VI_ERROR_HNDLR_NINSTALLED If no handler is installed for the specified event type, the request to enable the callback

mechanism for the event type returns this error code. The session cannot be enabled for
the VI_HNDLR mode of the callback mechanism.

C example

ViSession rm, vi;
if (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi) < VI_SUCCESS)
return;
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL);
// Do some processing here
// Cleanup and exit
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);
viClose(vi);
viClose(rm);

Comments
The viEnableEvent() operation enables notification of an event identified by eventType for mechanisms specified in mechanism.

Table 33: Special values for eventtype Parameter with viEnableEvent()

Value Description
VI_ALL_ENABLED_EVENTS Switch all events previously enabled on this session to the callback mechanism specified in

the mechanism parameter.

Makes it easier to switch between the two callback mechanisms for multiple events.

Table 34: Special values for mechanism Parameter with viEnableEvent()

Value Description
VI_QUEUE Enable this session to receive the specified event via thewaiting queue. Events must be retrieved

manually via the viWaitOnEvent() operation.

Enables the specified session to queue events.

VI_HNDLR Enable this session to receive the specified event via a callback handler, which must have already
been installed via viInstallHandler().

Enables the session to invoke a callback function to execute the handler. Applications must install
at least one handler to be enabled for this mode.

VI_SUSPEND_HNDLR Enable this session to receive the specified event via a callback queue. Events will not be
delivered to the session until viEnableEvent() is invoked again with the VI_HNDLR mechanism.

Enables the session to receive callbacks, but invocation of the handler is deferred to a later
time. Successive calls to this operation replace the old callback mechanism with the new callback
mechanism.

• Event queuing and callback mechanisms operate independently. Enabling one mode does not enable or disable the other mode.

Operations

TekVISA Programmer Manual 31

• If the mode is switched from VI_SUSPEND_HNDLR to VI_HNDLR for an event type,VISA will call installed handlers once for each
event occurrence pending in the session (and dequeued from the suspend handler queue) before switching modes.

• A session enabled to receive events can start receiving them before the viEnableEvent() operation returns. In this case, the handlers
set for an event type are executed before completion of the enable operation.

• If the mode is switched from VI_HNDLR to VI_SUSPEND_HNDLR for an event type, VISA will defer handler invocation for
occurrences of the event type.

• If a session has events pending in its queue(s) and viClose() is invoked on that session, VISA will free all pending event occurrences
and associated contexts not yet delivered to the application for that session.

See also
Handling Events

viDisableEvent (vi, EventType, mechanism)

viEventHandler (vi, eventType, context, userHandle)
Usage
Prototype for handler(s) to be called back when a particular event occurs.

C format
ViStatus viEventHandler(ViSession vi, ViEventType eventType, ViEvent context,
ViAddr userHandle)

Visual basic format
Not applicable

Parameters
Table 35: viEventHandler() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
eventType IN Logical event identifier.
context IN A handle specifying the unique occurrence of an event.
userHandle IN A handle specifying the unique occurrence of an event.

Return values
Table 36: viEventHandler() completion codes

Completion codes Description
VI_SUCCESS Event handled successfully.
VI_SUCCESS_NCHAIN Event handled successfully. Do not invoke any other handlers on this session for this event.

Operations

32

C example

ViStatus _VI_FUNCH ServiceReqEventHandler(ViSession vi, ViEventType
eventType, ViEvent event, ViAddr userHandle)
{
printf(”srq occurred\n“);
return VI_SUCCESS;
}
int main(int argc, char* argv[])
{
ViSession rm, vi;
ViStatus status;
char string[256];
ViUInt32 retCnt;
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
status = viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi);
if (status < VI_SUCCESS) goto error;
// Setup and enable event handler
status = viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceReqEventHandler, NULL);
if (status < VI_SUCCESS) goto error;
status = viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR, VI_NULL);
if (status < VI_SUCCESS) goto error;
// Do processing here
// Cleanup and exit
status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
if (status < VI_SUCCESS) goto error;
status = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceReqEventHandler, NULL);
if (status < VI_SUCCESS) goto error;
viClose(vi);
viClose(rm);

Comments
viEventHandler() is the prototype for a user event handler that is installed with the viInstallHandler() operation. The user handler is called
whenever a session receives an event and is enabled for handling events in the VI_HNDLR mode. The handler services the event and
returns VI_SUCCESS on completion. Because each event type defines its own context in terms of attributes, refer to the appropriate event
definition to determine which attributes can be retrieved using the context parameter.

• The VISA system automatically invokes the viClose() operation on the event context when a user handler returns. Because the event
context must still be valid after the user handler returns (so that VISA can free it up), do not invoke the viClose() operation on an event
context passed to a user handler. However, if the user handler will not return to VISA, call viClose() on the event context to manually
delete the event object. This situation may occur when a handler throws a C++ exception in response to a VISA exception event.

• Normally, you should always return VI_SUCCESS from all callback handlers, since future versions or implementations of VISA may
take actions based on other return values. However, if a specific handler does not want other handlers to be invoked for the given
event for the given session, you should return VI_SUCCESS_NCHAIN. No return value from a handler on one session will affect
callbacks on other sessions.

See also
Handling Events

Operations

TekVISA Programmer Manual 33

viInstallHandler (vi, eventType, handler, userHandle)

viUninstallHandler (vi, eventType, handler, userHandle)

viFindNext (findList, instrDesc)
Usage
Returns the next resource from the find list.

C format
ViStatus viFindNext(ViFindList findList, ViPRsrc instrDesc[])

Visual basic format
viFindNext (ByVal findList As Long, ByVal instrDesc As String) As Long

Parameters
Table 37: viFindNext() parameters

Name Direction Description
findList IN Describes a find list. This parameter must be created by viFindRsrc().
instrDesc OUT Returns a string identifying the location of a device. Strings can then be passed to

viOpen() to establish a session to the given device.

Return values
Table 38: viFindNext() completion codes

Completion codes Description
VI_SUCCESS Resource(s) found.

Table 39: viFindNext() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given findList does not support this operation.
VI_ERROR_RSRC_NFOUND There are no more matches.

C example

ViSession rm, vi;
ViStatus status;
ViChar desc[256], id[256], buffer[256];
ViUInt32 retCnt, itemCnt;
ViFindList list;

Operations

34

ViUInt32 i;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Find all GPIB devices
status = viFindRsrc(rm, ”GPIB?*INSTR“, &list, &itemCnt, desc);
if (status < VI_SUCCESS) goto error;
for (i = 0; i < itemCnt; i++) {
// Open resource found in rsrc list
status = viOpen(rm, desc, VI_NULL, VI_NULL, &vi);
if (status < VI_SUCCESS) goto error;
// Send an ID query.
status = viWrite(vi, (ViBuf) ”*idn“, 5, &retCnt);
if (status < VI_SUCCESS) goto error;
// Clear the buffer and read the response
status = viRead(vi, (ViBuf) id, sizeof(id), &retCnt);
id[retCnt] = ’\0’;
if (status < VI_SUCCESS) goto error;
// Print the response
printf(”id: %s: %s\n“, desc, id);
// We’re done with this device so close it
viClose(vi);
// Get the next item
viFindNext(list, desc);
}
// Clean up
viClose(rm);

Comments
The viFindNext() operation returns the next device found in the list created by viFindRsrc(). The list is referenced by the handle returned by
viFindRsrc().

Note: The size of the instrDesc parameter should be at least 256 bytes.

See also
Finding Resources

viFindRsrc (sesn, expr, findList, retcnt, instrDesc)

viFindRsrc (sesn, expr, findList, retCount, instrDesc)
Usage
Find a list of resources associated with a specified interface.

C format
ViStatus viFindRsrc(ViSession sesn, ViConstString expr, ViPFindList findList,
ViPUInt32 retCount, ViPRsrc instrDesc[])

Operations

TekVISA Programmer Manual 35

Visual basic format
viFindRsrc (ByVal sesn As Long, ByVal expr As String, ByVal findList As Long, ByVal
retCount As Long, ByVal instrDesc As String) As Long

Parameters
Table 40: viFindRsrc() parameters

Name Direction Description
sesn IN Resource Manager session (should always be the Default Resource Manager for VISA

returned from viOpenDefaultRM())
expr IN This is a regular expression followed by an optional logical expression. The grammar for

this expression is given below.
findList OUT Returns a handle identifying this search session. This handle will be used as an input in

viFindNext().
retCount OUT Number of matches.
instrDesc OUT Returns a string identifying the location of a device. Strings can then be passed to

viOpen() to establish a session to the given device.

Return values
Table 41: viFindRsrc() completion codes

Completion codes Description
VI_SUCCESS Resource(s) found.

Table 42: viFindRsrc() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation.
VI_ERROR_INV_EXPR Invalid expression specified for search.
VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

C example for INSTR resource

ViSession rm, vi;
ViStatus status;
ViChar desc[256], id[256], buffer[256];
ViUInt32 retCnt, itemCnt;
ViFindList list;
ViUInt32 i;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Find all GPIB devices

Operations

36

status = viFindRsrc(rm, “GPIB?*INSTR”, &list, &itemCnt, desc);
if (status < VI_SUCCESS) goto error;
for (i = 0; i < itemCnt; i++) {
// Open resource found in rsrc list
status = viOpen(rm, desc, VI_NULL, VI_NULL, &vi);
if (status < VI_SUCCESS) goto error;
// Send an ID query.
status = viWrite(vi, (ViBuf) ”*idn?“, 5, &retCnt);
if (status < VI_SUCCESS) goto error;
// Clear the buffer and read the response
status = viRead(vi, (ViBuf) id, sizeof(id), &retCnt);
id[retCnt] = ’\0’;
if (status < VI_SUCCESS) goto error;
// Print the response
printf(”id: %s: %s\n“, desc, id);
// We’re done with this device so close it
viClose(vi);// Get the next item
viFindNext(list, desc);
}
// Clean up
viClose(rm);

C example for socket resource

ViSession rm, vi;
ViStatus status;
ViChar desc[256], id[256], buffer[256];
ViUInt32 retCnt, itemCnt;
ViFindList list;
ViUInt32 i;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Find all TCPIP SOCKET devices
status = viFindRsrc(rm, “TCPIP?*SOCKET”, &list, &itemCnt, desc);
if (status < VI_SUCCESS) goto error;
for (i = 0; i < itemCnt; i++) {
// Open resource found in rsrc list
status = viOpen(rm, desc, VI_NULL, VI_NULL, &vi);
if (status < VI_SUCCESS) goto error;
// Send an ID query.
status = viWrite(vi, (ViBuf) “*idn?”, 5, &retCnt);
if (status < VI_SUCCESS) goto error;
// Clear the buffer and read the response
status = viRead(vi, (ViBuf) id, sizeof(id), &retCnt);
id[retCnt] = ’\0’;
if (status < VI_SUCCESS) goto error;
// Print the response
printf(“id: %s: %s\n”, desc, id);
// We’re done with this device so close it
viClose(vi);
// Get the next item
viFindNext(list, desc);

Operations

TekVISA Programmer Manual 37

}
// Clean up
viClose(rm);

Comments
The viFindRsrc() operation matches the value specified in expr with the resources available for a particular interface. On successful
completion, this function returns the first resource found in the list (instrDesc).

Note: The size of the instrDesc parameter should be at least 256 bytes.

• This function also returns a count (retcnt) to indicate if more resources were found, and returns a handle to the list of resources
(findList). This handle must be used as an input to viFindNext() and should be passed to viClose() when it is no longer needed.

• The retcnt and findList parameters can optionally be omitted if. only the first match is important and the number of matches is not
needed.

Table 43: Special value for retCount parameter with viFindRsrc()

Value Description
VI_NULL If you pass this value, VISA does not return the number of matches.

Table 44: Special value for findList parameter with viFindRsrc()

Value Description
VI_NULL If you pass this value and the operation completes successfully, VISA does not return the findList

handle and invokes viClose() on the handle instead.

• The search criteria specified in the expr parameter has two parts: a regular expression over a resource string, and an optional logical
expression over attribute values. A regular expression is a string consisting of ordinary characters as well as special characters.

Table 45: Regular expression special characters and operators

Special characters and operators Meaning
? Matches any one character.
\ Makes the character that follows it an ordinary character instead of special character.

For example, when a question mark follows a backslash (\?), it matches the ? character
instead of any one character.

[list] Matches any one character from the enclosed list. You can use a hyphen to match a
range of characters.

[^list] Matches any character not in the enclosed list. You can use a hyphen to match a range
of characters.

* Matches 0 or more occurrences of the preceding character or expression.
+ Matches 1 or more occurrences of the preceding character or expression.
exp|exp Matches either the preceding or following expression. The or operator |matches the

entire expression that precedes or follows it and not just the character that precedes or
follows it. For example, ASRL|GPIB means (ASRL)|(GPIB), not ASR(L|G)PIB.

(exp) Grouping characters or expressions.

• You use a regular expression to specify patterns to match in a given string. The regular expression is matched against the resource
strings of resources known to the VISA Resource Manager.

Operations

38

• The viFindRsrc() operation uses a case-insensitive compare feature when matching resource names against the regular expression
specified in expr. For example, calling viFindRsrc() with “GPIB?*INSTR” would return the same resources as invoking it with “gpib?
*instr”.

Table 46: Examples of regular expression matches

Regular expression Sample matches
GPIB?*INSTR Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR.
GPIB[0--9]*::?*INSTR Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR..
GPIB[0--9]::?*INSTR Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR but not GPIB12::8::INSTR.
GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but not GPIB0::2::INSTR or GPIB12::8::INSTR.
ASRL[0--9]*::?*INSTR Matches ASRL1::INSTR but not GPIB0::5::INSTR.
ASRL1+::INSTR Matches ASRL1::INSTR and ASRL11::INSTR but not ASRL2::INSTR.
?*INSTR Matches all INSTR (device) resources.
?* Matches all resources.
TCPIP?*SOCKET Matches all TCPIP SOCKET resources.

• If the resource string matches the regular expression, the attribute values of the resource are then matched against the expression
over attribute values. If the match is successful, the resource has met the search criteria and gets added to the list of resources found.

• The optional attribute expression allows construction of flexible and powerful expressions with the use of logical ANDs, ORs and NOTs.
Equal (==) and unequal (!=) comparators can be used compare attributes of any type, and in addition, other inequality comparators
(>, <, >=, <=) can be used to compare attributes of numeric type. If the attribute type is ViString, a regular expression can be used in
matching the attribute. Only global attributes can be used in the attribute expression.

Table 47: Examples that include attribute expression matches

Expr Meaning
GPIB[0--9]*::?*::?*::INSTR{VI_ATTR_GPIB_SECONDARY_ADDR >
0}

Find all GPIB devices that have secondary addresses greater than
0.

ASRL?*INSTR{VI_ATTR_ASRL_BAUD == 9600} Find all serial ports configured at 9600 baud.
?*ASRL?*INSTR{VI_ATTR_MANF_ID == 0xFF6 &&!
(VI_ATTR_ASRL_LA == 0 ||VI_ATTR_SLOT <= 0)}

Find all ASRL instrument resources whose manufacturer ID is FF6
and who are not logical address 0, slot 0, or external controllers.

See also
Finding Resources

viFindNext (findList, instrDesc)

viFlush (vi, mask)
Usage
Manually flushes the specified buffer(s).

C format
ViStatus viFlush (ViSession vi, ViUint16 mask)

Operations

TekVISA Programmer Manual 39

Visual basic format
viFlush (ByVal vi As Long, ByVal mask As Integer) As Long

Parameters
Table 48: viFlush() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
mask IN Specifies the action to be taken with flushing the buffer.

Return values
Table 49: viFlush() completion codes

Completion codes Description
VI_SUCCESS Buffers flushed successfully.

Table 50: viFlush() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O error.
VI_ERROR_TMO The read/write operation was aborted because timeout expired while operation was in

progress.
VI_ERROR_INV_MASK The specified mask does not specify a valid flush operation on read/write resource.

C example

// Request the curve
status = viPrintf(vi, “CURVE?\n”);
if (status < VI_SUCCESS) goto error;
// Always flush if a viScanf follows a viPrintf or
// viBufWrite.
status = viFlush(vi, VI_WRITE_BUF | VI_READ_BUF_DISCARD);
if (status < VI_SUCCESS) goto error;
// Get first char and validate
status = viScanf(vi, “%c”, &c);

Comments
The value of mask can be one of the following flags:

Operations

40

Table 51: viFlush values for mask parameter

Flag Meaning
VI_READ_BUF Discard the read buffer contents. If data was present in the read buffer and no END--indicator

was present, read from the device until encountering an END indicator (which causes the
loss of data). This action resynchronizes the next viScanf() call to read a <TERMINATED
RESPONSE MESSAGE>. (Refer to the IEEE 488.2 standard.)

VI_READ_BUF_DISCARD Discard the read buffer contents (does not perform any I/O to the device).
VI_WRITE_BUF Flush the write buffer by writing all buffered data to the device.
VI_WRITE_BUF_DISCARD Discard the write buffer contents (does not perform any I/O to the device).
VI_ASRL_IN_BUF Discard the receive buffer contents (same asVI_ASRL_IN_BUF_DISCARD).
VI_ASRL_IN_BUF_DISCARD Discard the receive buffer contents (does not perform any I/O to the device)
VI_ASRL_OUT_BUF Flush the transmit buffer by writing all buffered data to the device.
VI_ASRL_OUT_BUF_DISCARD Discard the transmit buffer contents (does not perform any I/O to the device).

• It is possible to combine any of these read flags and write flags for different buffers by ORing the flags. However, combining two flags
for the same buffer in the same call to viFlush() is illegal.

• Notice that when using formatted I/O operations with a serial device, a flush of the formatted I/O buffers also causes the corresponding
serial communication buffers to be flushed. For example, calling viFlush() with VI_WRITE_BUF also flushes the VI_ASRL_OUT_BUF.

See also
Reading and Writing Formatted Data

viSetBuf (vi, mask, size)

viGetAttribute (vi, attribute, attrState)
Usage
Retrieves the state of an attribute for the specified session, event, or find list.

C format
ViStatus viGetAttribute(ViObject vi, ViAttr attribute, ViAttrState attrState)

Visual basic format
viGetAttribute (ByVal vi As Long, ByVal attribute As Long, ByVal attrState As Long)
As Long

Parameters
Table 52: viGetAttribute() parameters

Name Direction Description
vi IN Unique logical identifier to a session, event, or find list.
attribute IN Session, event, or find list attribute for which the state query is made.

Table continued…

Operations

TekVISA Programmer Manual 41

Name Direction Description
attrState OUT The state of the queried attribute for a specified resource. The interpretation of the returned

value is defined by the individual resource.

Return values
Table 53: viGetAttribute() completion codes

Completion codes Description
VI_SUCCESS Session, event, or find list attribute retrieved successfully.

Table 54: viGetAttribute() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced session, event, or find list.

C example

// Get VISA’s vendors name, VISA Specification
// Version, and implementation version.
status = viGetAttribute(rm, VI_ATTR_RSRC_MANF_NAME, buffer);
if (status < VI_SUCCESS) goto error;
status = viGetAttribute(rm, VI_ATTR_RSRC_SPEC_VERSION,
&version);
if (status < VI_SUCCESS) goto error;
status = viGetAttribute(rm, VI_ATTR_RSRC_IMPL_VERSION,
&impl);
if (status < VI_SUCCESS) goto error;

Comments
tThe viGetAttribute() operation is used to retrieve the state of an attribute for the specified session, event, or find list.

The output parameter attrState is of the type of the attribute actually being retrieved. For example, when retrieving an attribute defined as a
ViBoolean, your application should pass a reference to a variable of type ViBoolean. Similarly, if the attribute is defined as being ViUInt32,
your application should pass a reference to a variable of type ViUInt32.

See also
Setting and Retrieving Attributes

viSetAttribute (vi, attribute, attrState)

viGpibCommand (vi, buf, count, retCount)
Usage
Write GPIB command bytes on the bus.

Operations

42

C format
ViStatus status; ViSession vi,rm; ViUInt32 retCnt; status = viGpibCommand(vi,
(ViConstBuf)"*IDN?", 5, &retCnt);

Parameters
Table 55: viGpibCommand() parameters

Name Direction Type Description
vi IN ViSession Unique logical identifer to a session.
buf IN ViConstBuf Buffer containing valid GPIB commands.
count IN ViUInt32 Number of bytes to be written.
retCount OUT ViUInt32 Number of bytes actually transferred.

Return values
Type Vistatus: This is the operational return status. It returns either a completion code or an error code as follows.

Table 56: viGpibCommand() completion codes

Completion code Description
VI_SUCCESS Operation completed successfully.

Table 57: viGpibCommand() error codes

Error codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been

locked by this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid (due to attributes being set to an

inconsistent state).
VI_ERROR_NCIC The interference associated with the given vi is not currently the controller in charge.
VI_ERROR_NLISTENERS No Listereners condition is detected (both NRFD and NADC are deasserted).
VI_ERROR_IO An unknown I/O error occurred during transfer.

viInstallHandler (vi, eventType, handler, userHandle)
Usage
Installs callback handler(s) for the specified event.

Operations

TekVISA Programmer Manual 43

C format
ViStatus viInstallHandler (ViSession vi, ViEventType eventType, ViHndlr handler,
ViAddr userHandle)

Visual basic format
Not Applicable

Parameters
Table 58: viInstallHandler() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
eventType IN Logical event identifier.
handler IN Interpreted as a valid reference to a handler to be installed by a client application.
userHandle IN A value specified by an application that can be used for identifying handlers uniquely for

an event type.

Return values
Table 59: viInstallHandler() completion codes

Completion codes Description
VI_SUCCESS Event handler installed successfully.

Table 60: viInstallHandler() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.
VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be returned if an application attempts to install

multiple handlers for the same event on the same session.

C example

ViStatus _VI_FUNCH ServiceReqEventHandler(ViSession vi, ViEventType eventType,
ViEvent event, ViAddr userHandle)
{
printf(”srq occurred\n“);
return VI_SUCCESS;
}
int main(int argc, char* argv[])
{
ViSession rm, vi;
ViStatus status;

Operations

44

char string[256];
ViUInt32 retCnt;
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
status = viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL,
&vi);
if (status < VI_SUCCESS) goto error;
// Setup and enable event handler
status = viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceReqEventHandler, NULL);
if (status < VI_SUCCESS) goto error;
status = viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR, VI_NULL);
if (status < VI_SUCCESS) goto error;
// Do processing here
// Cleanup and exit
status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR);
if (status < VI_SUCCESS) goto error;
status = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceReqEventHandler, NULL);
if (status < VI_SUCCESS) goto error;
viClose(vi);
viClose(rm);
return 0;
error:
viStatusDesc(rm, status, string);
fprintf(stderr, ”Error: %s\n“, (ViBuf) string);
return 0;
}

Comments
The viInstallHandler() operation allows applications to install handlers on sessions. The handler specified in handler is installed along with
any previously installed handlers for the specified event.

• You can specify a value in userHandle that is passed to the handler on its invocation. VISA identifies handlers uniquely using the
handler reference and this value.

• VISA allows you to install multiple handlers for an event type on the same session. You can install multiple handlers through multiple
invocations of the viInstallHandler() operation, where each invocation adds to the previous list of handlers. If more than one handler
is installed for an event type, each handlers is invoked on every occurrence of the specified event(s). Handlers are invoked in Last In
First Out (LIFO) order

See also
Handling Events

viUninstallHandler (vi, eventType, handler, userHandle)

viLock (vi, lockType, timeout, requestedKey, accessKey)
Usage
Obtains a lock on the specified resource.

Operations

TekVISA Programmer Manual 45

C format
ViStatus viLock(ViSession vi, ViAccessMode lockType, ViUInt32 timeout, ViConstKeyId
requestedKey, ViPKeyId accessKey[])

Visual basic format
viLock (ByVal vi As Long, ByVal lockType As Long, ByVal timeout As Long,
ByValrequestedKey As String, ByVal accessKey As String) As Long

Parameters
Table 61: viLock() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
lockType IN Specifies the type of lock requested, which can be either VI_EXCLUSIVE_LOCK

or VI_SHARED_LOCK.
timeout IN Absolute time period (in milliseconds) that a resource waits to get unlocked by

the locking session before returning this operation with an error.
requestedKey IN This parameter is not used and should be set to VI_NULL when lockType is

VI_EXCLUSIVE_LOCK (exclusive locks). When trying to lock the resource as
VI_SHARED_LOCK (shared), a session can either set it to VI_NULL, so that
VISA generates an accessKey for the session, or the session can suggest an
accessKey to use for the shared lock. Refer to the comments section below for
more details.

accessKey OUT This parameter should be set to VI_NULL when lockType is
VI_EXCLUSIVE_LOCK (exclusive locks). When trying to lock the resource as
VI_SHARED_LOCK (shared), the resource returns a unique access key for the
lock if the operation succeeds. This accessKey can then be passed to other
sessions to share the lock.

Return values
Table 62: viLock() completion codes

Completion codes Description
VI_SUCCESS Specified access mode is successfully acquired.
VI_SUCCESS_NESTED_EXCLUSIVE Specified access mode is successfully acquired, and this session has nested

exclusive locks.
VI_SUCCESS_NESTED_SHARED Specified access mode is successfully acquired, and this session has nested shared

locks.

Table 63: viLock() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

Table continued…

Operations

46

Error codes Description
VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because the resource is already locked with

a lock type incompatible with the lock requested. For example, this error is returned if
a viLock() operation requesting a shared lock is invoked from a session that has an
exclusive lock.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this resource.
VI_ERROR_INV_ACCESS_KEY The requestedKey value passed in is not a valid access key to the specified resource.
VI_ERROR_TMO Specified type of lock could not be obtained within the specified timeout period.

C example

ViSession rm, vi;
char string[256];
ViUInt32 retCnt;
int i = 0;
if (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi) < VI_SUCCESS)
return;
for (i = 1; i < 100; i++) {
viLock(vi, VI_EXCLUSIVE_LOCK, VI_TMO_INFINITE, NULL,
NULL);
if (viWrite(vi, (ViBuf) ”ch1:scale?“, 10, &retCnt)
< VI_SUCCESS) return;
if (viRead(vi, (ViBuf) string, 256, &retCnt)
< VI_SUCCESS) return;
printf(”%d: scale %s“, i, string);
viUnlock(vi);
}

Comments
This operation is used to obtain a lock on the specified resource. The caller can specify the type of lock requested—exclusive or shared
lock—and the length of time the operation will suspend while waiting to acquire the lock before timing out. This operation can also be used
for sharing and nesting locks.

Note: If requesting a VI_SHARED_LOCK, the size of the accessKey parameter should be at least 256 bytes.

• The requestedKey and the accessKey parameters apply only to shared locks. When using the lock type VI_EXCLUSIVE_LOCK,
requestedKey and accessKey should be set to VI_NULL.

• VISA allows you to specify a key to be used for lock sharing through the use of the requestedKey parameter. Or, you can pass
VI_NULL for requestedKey when obtaining a shared lock, in which case VISA will generate a unique access key and return it through
accessKey. If you do specify a requestedKey, VISA will try to use this value for the accessKey. As long as the resource is not locked,
VISA will use the requestedKey as the access key and grant the lock. When the operation succeeds, the requestedKey will be copied
into the user buffer referred to by the accessKey.

• The session that gained a shared lock can pass the accessKey to other sessions for the purpose of sharing the lock. The session
wanting to join the group of sessions sharing the lock can use the key as an input value to the requestedKey parameter. VISA will add
the session to the list of sessions sharing the lock, as long as the requestedKey value matches the accessKey value for the particular
resource. The session obtaining a shared lock in this manner will then have the same access privileges as the original session that
obtained the lock.

Operations

TekVISA Programmer Manual 47

• You can obtain nested locks through this operation. To acquire nested locks, invoke the viLock() operation with the same lock type
as the previous invocation of this operation. For each session, viLock() and viUnlock() share a lock count, which is initialized to 0.
Each invocation of viLock() for the same session (and for the same lockType) increases the lock count. In the case of a shared lock, it
returns with the same accessKey every time.

When a session locks the resource a multiple number of times, you must invoke the viUnlock() operation an equal number of times in
order to unlock the resource. That is, the lock count increments for each invocation of viLock(), and decrements for each invocation of
viUnlock(). A resource is actually unlocked only when the lock count is 0.

See also
Locking and Unlocking Resources

viUnlock (vi)

viOpen (sesn, rsrcName, accessMode, timeout, vi)
Usage
Opens a session to the specified resource.

C format
ViStatus viOpen(ViSession sesn, ViConstRsrc name, ViAccessMode mode, ViUInt32
timeout, ViPSession vi)

Visual basic format
viOpen (ByVal sesn As Long, ByVal rsrcName As String, ByVal accessMode As Long,
ByVal timeout As Long, vi As Long) As Long

Parameters
Table 64: viOpen() parameters

Name Direction Description
sesn IN Resource manager session (should always be the default resource manager for VISA

returned from viOpenDefaultRM()).
rsrcName IN Unique symbolic name of a resource.
accessMode IN Specifies the mode(s) by which the resource is to be accessed: VI_EXCLUSIVE_LOCK

and/or VI_LOAD_CONFIG. If the latter value is not used, the session uses the default
values provided by VISA. Multiple access modes can be used simultaneously by specifying
a “bit-wise OR” of the above values.

timeout IN If the accessMode parameter requests a lock, then this parameter specifies the absolute
time period (in milliseconds) that the resource waits to get unlocked before this operation
returns an error; otherwise, this parameter is ignored.

vi OUT Unique logical identifier reference to a session.

Operations

48

Return values
Table 65: viOpen() completion codes

Completion codes Description
VI_SUCCESS Session opened successfully.
VI_SUCCESS_DEV_NPRESENT Session opened successfully, but the device at the specified address is not responding.
VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or could not be loaded; using VISA-

specified defaults instead.

Table 66: viOpen() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.
VI_ERROR_INV_ACC_MODE Invalid access mode.
VI_ERROR_RSRC_NFOUND Insufficient location information or resource not present in the system.
VI_ERROR_ALLOC Insufficient system resources to open a session.
VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently access it.
VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because the resource is already locked with a

lock type incompatible with the lock requested.
VI_ERROR_TMO A session to the resource could not be obtained within the specified timeout period.
VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located or loaded.

C example

// Open the GPIB device at primary address 1, GPIB board 8
status = viOpen(rm, “GPIB8::1::INSTR”, VI_NULL, VI_NULL,
&vi);
if (status < VI_SUCCESS) goto error;

Comments
The viOpen() operation opens a session to the specified resource. It returns a session identifier that can be used to call any other
operations of that resource.

• The GPIB keyword can be used to establish communication with a GPIB device.
• The ASRL keyword is used to establish communication with an asynchronous serial device (such as RS-232).
• An address string must uniquely identify the resource. The following table shows the grammar for the address string and gives

examples.

• Optional string segments are shown in square brackets ([]).
• The default value for the optional string segment board is 0.
• The default value for the optional string segment secondary address is none.
• Address strings are not case sensitive.

Operations

TekVISA Programmer Manual 49

Table 67: Resource address string grammar and examples with viOpen()

Grammar Example Description
GPIB[board]:: primary address[::
secondary address][::INSTR]

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary address 0 in GPIB
interface 0.

ASRL[board][::INSTR] ASRL1::INSTR A serial device attached to interface ASRL1.

Table 68: Special values for accessmode parameter with viOpen()

Value Description
VI_EXCLUSIVE_LOCK Used to acquire an exclusive lock immediately upon opening a session; if a lock cannot be

acquired, the session is closed and an error is returned.
VI_LOAD_CONFIG Used to configure attributes to values specified by an external configuration utility.

See also
Opening and Closing Sessions

viOpenDefaultRM (sesn)

viClose (vi)

viOpenDefaultRM (sesn)
Usage
Returns a session to the Default Resource Manager.

C format
ViStatus viOpenDefaultRM(ViSession sesn)

Visual basic format
viOpenDefaultRM (ByVal sesn As Long) As Long

Parameters
Table 69: viOpenDefaultRM() parameters

Name Direction Description
sesn OUT Unique logical identifier to a Default Resource Manager session.

Return values
Table 70: viOpenDefaultRM() completion codes

Completion codes Description
VI_SUCCESS Session to the Default Resource Manager resource created successfully.

Operations

50

Table 71: viOpenDefaultRM() error codes

Error codes Description
VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.
VI_ERROR_ALLOC Insufficient system resources to create a session to the Default Resource Manager

resource.
VI_ERROR_INV_SETUP Some implementation-specific configuration file is corrupt or does not exist.
VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located or loaded.

C example

// Open a default session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

Comments
The viOpenDefaultRM() function must be called before any VISA operations can be invoked.

• The first call to this function initializes the VISA system, including the Default Resource Manager resource, and also returns a session
to that resource.

• Subsequent calls to this function return new and unique sessions to the same Default Resource Manager resource.
• When a Resource Manager session is closed, all find lists and device sessions opened with that Resource Manager session are also

closed.

See also
Opening and Closing Sessions

viOpen (sesn, rsrcName, accessMode, timeout, vi)

viClose (vi)

viParseRsrc (sesn, rsrcName, intfType, intfNum)
Usage
Parses a resource string to get the interface information.

C format
ViStatus viParseRsrc(ViSession sesn, ViConstRsrc rsrcName, ViUint16 intfType,
ViUInt intfNum)

Visual basic format
viParseRsrc (ByVal sesn As Long, ByVal rsrcName As String, ByVal intfType As
Integer, ByVal intfNum As Integer) As Long

Operations

TekVISA Programmer Manual 51

Parameters
Table 72: viParseRsrc() parameters

Name Direction Description
sesn IN Resource Manager session (should always be the Default Resource Manager for VISA

returned from viOpenDefaultRM())
rsrcName IN Unique symbolic name of a resource.
intfType OUT Interface type of the given resource string.
intfNum OUT Board number of the interface of the given resource string.

Return values
Table 73: viParseRsrc() completion codes

Completion codes Description
VI_SUCCESS Resource string is valid.

Table 74: viParseRsrc() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given session does not support this operation. For VISA, this operation is supported
only by the Default Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.
VI_ERROR_RSRC_NFOUND Insufficient location information or resource not present in the system.
VI_ERROR_ALLO Insufficient system resources to parse the string.
VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located or loaded.
VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface number is not configured.

C example

if (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viParseRsrc(rm,“GPIB8::1::INSTR”, ifType, ifNum)) < VI_SUCCESS)
return;

Comments
This operation parses a resource string to verify its validity. It should succeed for all strings returned by viFindRsrc() and recognized by
viOpen(). This operation is useful if you want to know what interface a given resource descriptor would use without actually opening a
session to it.

The values returned in intfType and intfNum correspond to the attributes VI_ATTR_INTF_TYPE and VI_ATTR_INTF_NUM. These values
would be the same if a user opened that resource with viOpen() and queried the attributes with viGetAttribute().

Note: The size of the instrDesc parameter should be at least 256 bytes.

Operations

52

• This function returns information determined solely from the resource string and any static configuration information (such as.INI files
or the Registry).

• This function is case--insensitive when matching resource names against the name specified in rsrcName. Calling viParseRsrc() with
“gpib8::1::instr” will produce the same results as invoking it with “GPIB 8::1::INSTR”..

See also
Finding Resources

viFindNext (findList, instrDesc)

viFindRsrc (sesn, expr, findList, retcnt, instrDesc)

viParseRsrcEx (sesn, rsrcName, intfType, intfNum, rsrcClass,
unaliasedExpandedRsrcName, aliasIfExists)
Usage
Parse a resource string to get extended interface information.

Parameters
Table 75: viParseRsrcEx() parameters

Name Direction Type Description
sesn IN ViSession Resource Manager session (should always be the Default Resource Manager for

VISA returned from viopenDefaultRM()) .
rsrcName IN ViConstRsrc Unique symbolic name of a resource.
intfType OUT ViUInt 16 Interface type of the given resource string.
intfNum OUT ViUInt 16 Board number of the interface of the given resource string.
rsrcClass OUT ViString Specifies the resource class (for example, "INSTR") of the given resource string,

as defined in Section 5.
Unaliased
expanded
RsrcName

OUT ViString This is the expanded version of the given resource string. The format should be
similar to the VISA-defined canonical resource name.

aliasIf Exists OUT ViString Specifies the user-defined alias for the given resource string, if a VISA
implementation allows aliases and an alias exists for the given resource string.

Return values
Table 76: viParseRsrcEx() completion codes

Completion codes Description
VI_SUCCESS Resource string is valid.
VI_WARN_EXT_FUNC_NIMPL The operation succeeded, but a lower level driver did not implement the extended

functionality.

Operations

TekVISA Programmer Manual 53

Table 77: viParseRsrcEx() error codes

Error code Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation. For VISA, this operation is supported
only by the Default Resource Manager session.

VI_EROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.
VI_ERROR_RSRC_NFOUND Insufficient location information or resource not present in the system.
VI_ERROR_ALLOC Insufficient system resources to parse the string.
VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located or loaded.
VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface number is not configured.

viPrintf (vi, writeFmt, <arg1, arg2, ...>)
Usage
Formats and writes data to a device using the optional variable-length argument list.

C Format
ViStatus viPrintf (ViSession vi, ViConstString writeFmt, ...)

Visual Basic Format
Not applicable

Parameters
Table 78: viPrintf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
writeFmt IN String describing the format for arguments.
<arg1, arg2,...> IN Optional argument(s) the format string is applied to.

Return Values
Table 79: viPrintf() completion codes

Completion codes Description
VI_SUCCESS Parameters were successfully formatted.

Operations

54

Table 80: viPrintf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform write operation because of I/O error.
VI_ERROR_TMO Timeout expired before write operation completed.
VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.
VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system resources.

C example

// Turn headers off, this makes parsing easier
status = viPrintf(vi, “header off\n”);
if (status < VI_SUCCESS) goto error;
// Get record length value
status = viQueryf(vi, ”hor:reco?\n“, ”%ld“, elements);
if (status < VI_SUCCESS) goto error;
// Make sure start, stop values for curve query match the
// full record length
status = viPrintf(vi, “data:start %d;data:stop %d\n”, 0,
(*elements)--1);
if (status < VI_SUCCESS) goto error;

Comments
The viPrintf() operation sends data to a device as specified by the format string (writeFmt). Before sending the data, the operation formats
the argument characters as specified in the writeFmt string.

• The viWrite() operation performs the actual low--level I/O to the device. As a result, you should not use the viWrite() and viPrintf()
operations in the same session.

• The writeFmt string can include regular character sequences, special formatting characters, and special format specifiers.

• The regular characters (including white spaces) are written to the device unchanged.
• The special characters consist of ‘ \’ (backslash) followed by a character.
• The format specifier sequence consists of ‘%’ (percent) followed by an optional modifier (flag), followed by a format code.

Special formatting characters
Special formatting character sequences send special characters. The following table lists the special characters and describes what they
send to the device.

Table 81: Special characters used with viPrintf()

Formatting character Character Sent to Device
\n Sends the ASCII LF character. The END identifier will also be automatically sent.
Table continued…

Operations

TekVISA Programmer Manual 55

Formatting character Character Sent to Device
\r Sends an ASCII CR character.
\t Sends an ASCII TAB character.
\### Sends the ASCII character specified by the octal value.
\x## Sends the ASCII character specified by the hexadecimal value.
\” Sends the ASCII double-quote (”) character.
\\ Sends a backslash (\) character.

Format specifiers
The format specifiers convert the next parameter in the sequence according to the modifier and format code, after which the formatted data
is written to the specified device. The format specifier takes the following syntax:
%[modifiers]format code
• Modifiers are optional codes that describe the target data.
• Format code specifies which data type the argument is represented in.
• In the following tables, a ‘d’ format code refers to all conversion codes of type integer (‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’), unless specified as %d

only. Similarly, an ‘f’ format code refers to all conversion codes of type float (‘f’, ‘e’, ‘E’, ‘g’, ‘G’), unless specified as %f only. Every
conversion command starts with the % character and ends with a conversion character (format code). Between the % character and
the format code, the following modifiers can appear in the sequence.

ANSI C standard modifiers
Table 82: ANSI C standard modifiers used with viPrintf()

Modifier Supported with Format Code Description
An integer specifying field width. d, f, s format codes This specifies the minimum field width of the converted argument. If

an argument is shorter than the field width, it will be padded on theleft
(or on the right if the -flag is present).

Special case: For the @H, @Q, and @B flags, the fieldwidth includes
the #H, #Q, and #B strings, respectively.

An asterisk (*) may be present in lieu of a field width modifier, in which
case an extra arg is used. This arg must be an integer representing
the field width.

An integer specifying precision. d, f, s format codes The precision string consists of a string of decimal digits. A . (decimal
point) must prefix specifies the following:

1. The minimum number of digits to appear for the @1, @H, @Q,
and @B flags and the i, o, u, x, and X format codes.

2. The maximum number of digits after the decimal point in case of f
format codes.

3. The maximum numbers of characters for the string (s) specifier.
4. Maximum significant digits for g formatcode.

An asterisk (*) may be present in lieu of a precision modifier, in which
case an extra arg is used. This arg must be an integer representing
the precision of a numeric field.

Table continued…

Operations

56

Modifier Supported with Format Code Description
An argument length modifier. h, l,
L, z, and Z are legal values. (z
and Z are not ANSI C standard
modifiers.)

h (d, b, B format codes)

l (d, f, b, B format codes)

L (f format code)

z (b, B format codes)

Z (b, B format codes

The argument length modifiers specify one of the following:

1. The h modifier promotes the argument to a short or unsigned
short, depending on the format code type.

2. The l modifier promotes the argument to a long or unsigned long.
3. The L modifier promotes the argument to a long double parameter.
4. The z modifier promotes the argument to an array of floats.
5. The Z modifier promotes the argument to an array of doubles.

Enhanced modifiers to ANSI C standards
Table 83: Enhanced modifiers to ANSI C standards used with viPrintf()

Modifier Supported with Format Code Description
A comma (,) followed by an
integer n, where n represents the
array size.

%d and %f only The corresponding argument is interpreted as a reference to the
first element of an array of size n.

The first n elements of this list are printed in the format specified by
the format code.

An asterisk (*) may be present after the

comma (,) modifier, in which case an extra arg is used. This arg
must be an integer representing the array size of the given type.

@1 %d and %f only Converts to an IEEE 488.2 defined NR1 compatible number, which
is an integer without any decimal point (for example, 123).

@2 %d and %f only Converts to an IEEE 488.2 defined NR2 compatible number. The
NR2 number has at least one digit after the decimal point (for
example, 123.45).

@3 %d and %f only Converts to an IEEE 488.2 defined NR3 compatible number.
An NR3 number is a floating point number represented in an
exponential form (for example, 1.2345E--67).

@H %d and %f only Converts to an IEEE 488.2 defined <HEXADECIMAL NUMERIC
RESPONSE DATA>. The number is represented in a base of
sixteen form. Only capital letters should represent numbers. The
number is of form #HXXX.., where XXX.. is a hexadecimal number
(for example, #HAF35B).

@Q %d and %f only Converts to an IEEE 488.2 defined <OCTAL NUMERIC
RESPONSE DATA>. The number is represented in a base of eight
form. The number is of the form #QYYY.., where YYY.. is an octal
number (for example, #Q71234).

@B %d and %f only Converts to an IEEE 488.2 defined <BINARY NUMERIC
RESPONSE DATA>. The number is represented in a base two
form. The number is of the form #BZZZ.., where ZZZ.. is a binary
number (for example, #B011101001).

The following are the allowed format code characters. A format specifier sequence should include one and only one format code.

Standard ANSI C Format Codes

Operations

TekVISA Programmer Manual 57

% Send the ASCII percent (%) character.

c Argument type: A character to be sent.

d Argument type: An integer.

Table 84: Modifiers used with argument types %, c, and d with viPrintf()

Modifier Interpretation
Default functionality Print an integer in NR1 format (an integer without a decimal point).
@2 or @3 The integer is converted into a floating point number and output in the correct format.
field width Minimum field width of the output number. Any of the six IEEE 488.2 modifiers can also be specified with field

width.
Length modifier l arg is a long integer.
Length modifier h arg is a short integer.
, array size arg points to an array of integers (or long or short integers, depending on the length modifier) of size array

size. The elements of this array are separated by array size -- 1 commas and output in the specified format.

f Argument type: A floating point number.

Table 85: Modifiers used with argument type f with viPrintf()

Modifier Interpretation
Default functionality Print a floating point number in NR2 format (a number with at least one digit after the decimal point).
@1 Print an integer in NR1 format. The number is truncated.
@3 Print a floating point number in NR3 format (scientific notation). Precision can also be specified.
field width Minimum field width of the output number. Any of the six IEEE 488.2 modifiers can also be specified with field

width.
Length modifier I arg is a double float.
Length modifier L arg is a long double.
, array size arg points to an array of floats (or doubles or long doubles, depending on the length modifier) of size array

size. The elements of this array are separated by array size - 1 commas and output in the specified format.

s Argument type: A reference to a NULL-terminated string that is sent to the device without change.

Enhanced format codes

b Argument type: A location of a block of data.

Table 86: Modifiers used with argument types s and b with viPrintf()

Modifier Interpretation
Default functionality The data block is sent as an IEEE 488.2 <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA>. A

count (long integer) must appear as a flag that specifies the number of elements (by default, bytes) in the
block. A field width or precision modifier is not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case, two args are used, the first of which is a long
integer specifying the count of the number of elements in the data block. The second arg is a reference to the
data block. The size of an element is determined by the optional length modifier (see below), and the default
is byte width.

Table continued…

Operations

58

Modifier Interpretation
Length modifier h arg points to an array of unsigned short integers (16 bits). The count corresponds to the number of words

rather than bytes. The data is swapped and padded into standard IEEE 488.2 format, if native computer
representation is different

Length modifier l arg points to an array of unsigned long integers. The count specifies the number of longwords (32 bits). Each
longword data is swapped and padded into standard IEEE 488.2 format, if native computer representation is
different.

Length modifier z arg points to an array of floats. The count specifies the number of floating point numbers (32 bits). The
numbers are represented in IEEE 754 format, if native computer representation is different.

Length modifier Z arg points to an array of doubles. The count specifies the number of double floats (64 bits). The numbers will
be represented in IEEE 754 format, if native computer representation is different.

B Argument type: A location of a block of data. The functionality is similar to b, except the data block is sent as an IEEE 488.2
<INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA>. This format involves sending an ASCII LF character with the END
indicator set after the last byte of the block.

y Argument type: A location of a block of binary data.

Table 87: Modifiers used with argument types B and y with viPrintf()

Modifier Interpretation
Default functionality The data block is sent as raw binary data. A count (long integer) must appear as a flag that specifies

the number of elements (by default, bytes) in the block. A field width or precision modifier is not allowed
with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case, two args are used, the first of which
is a long integer specifying the count of the number of elements in the data block. The second arg is a
reference to the data block. The size of an element is determined by the optional length modifier (see
below), and the default is byte width.

Length modifier h arg points to an array of unsigned short integers (16 bits). The count corresponds to the number of
words rather than bytes. If the optional !ol byte order modifier is present, the data is sent in little endian
format; otherwise, the data is sent in standard IEEE 488.2 format. The data will be byte swapped and
padded as appropriate if native computer representation is different.

Length modifier l arg points to an array of unsigned long integers (32 bits). The count specifies the number of longwords
rather than bytes. If the optional !ol byte order modifier is present, the data is sent in little endian format;
otherwise, the data is sent in standard IEEE 488.2 format. The data will be byte swapped and padded
as appropriate if native computer representation is different.

Byte order modifier !ob Data is sent in standard IEEE 488.2 (big endian) format. This is the default behavior if neither !ob nor !ol
is present.

Byte order modifier !ol Data is sent in little endian format.

• The END indicator is not appended when LF(\n) is part of a binary data block, as with %b or %B.
• For ANSI C compatibility, VISA also supports the following conversion codes for output codes: ‘i,’ ‘o,’ ‘u,’ ‘n,’ ‘x,’ ‘X,’ ‘e,’ ‘E,’ ‘g,’ ‘G’, and

‘p.’ For further explanation of these conversion codes, see the ANSI C Standard.

See also
Reading and Writing Formatted Data

viScanf (vi, readFmt, <arg1, arg2, ...>)

Operations

TekVISA Programmer Manual 59

viQueryf (vi, writeFmt, readFmt, <arg1, arg2, ...>)

viQueryf (vi, writeFmt, readFmt, <arg1, arg2,...>)
Usage
Writes and reads formatted data to and from a device using the optional variable-length argument list.

C format
ViStatus viQueryf (ViSession vi, ViConstString writeFmt, ViConstString
readFmt, ...)

Visual basic format
Not Applicable

Parameters
Table 88: viQueryf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
writeFmt IN ViConstString describing the format of write arguments.
readFmt IN ViConstString describing the format of read arguments.
<arg1, arg2,...> IN OUT Optional argument(s) on which write and read format strings are applied.

Return values
Table 89: viQueryf() completion codes

Completion codes Description
VI_SUCCESS Successfully completed the Query operation.

Table 90: viQueryf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O error.
VI_ERROR_TMO Timeout occurred before read/write operation completed.
VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is invalid.
VI_ERROR_NSUP_FMT A format specifier is not supported for current argument type.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system resources.

Operations

60

C example

// Get the yoffset to help calculate the vertical values.
status = viQueryf(vi, “WFMOUTPRE:YOFF?\n”, “%f”, &yoffset);
if (status < VI_SUCCESS) goto error;
// Get the ymult to help calculate the vertical values.
status = viQueryf(vi, “WFMOutpre:YMULT?\n”, “%f”, &ymult);
if (status < VI_SUCCESS) goto error;

Comments
This operation provides a mechanism of “Send, then Receive” typical to a command sequence from a commander device. In this manner,
the response generated from the command can be read immediately.

• This operation is a combination of the viPrintf() and viScanf() operations.
• The first n arguments corresponding to the first format string are formatted by using the writeFmt string, then sent to the device. The

write buffer is flushed immediately after the write portion of the operation completes. After these actions, the response data is read
from the device into the remaining parameters (starting from parameter n+1) using the readFmt string.

Note: Because the prototype for this function cannot provide complete type-checking, remember that all output parameters
must be passed by reference.

See also
Reading and Writing Formatted Data

viPrintf (vi, writeFmt, <arg1, arg2, ...>)

viScanf (vi, readFmt, <arg1, arg2, ...>)

viRead (vi, buf, count, retCount)
Usage
Reads data synchronously from a device into the specified buffer

C Format
ViStatus viRead (ViSession vi, ViPBuf buf, ViUInt32 count, ViPUInt32 retCount)

Visual basic format
viRead (ByVal vi As Long, ByVal buf As String, ByVal count As Long, ByVal
retCountAs Long) As Long

Parameters
Table 91: viRead() Parameters

Name Direction Description
vi IN Unique logical identifier to a session.
buf OUT Represents the location of a buffer to receive data from device.
count IN Number of bytes to be read.
Table continued…

Operations

TekVISA Programmer Manual 61

Name Direction Description
retCount OUT Represents the location of an integer that will be set to the number of bytes actually

transferred.

Return values
Table 92: viRead() completion codes

Completion codes Description
VI_SUCCESS The operation completed successfully and the END indicator was received (for

interfaces that have END indicators).
VI_SUCCESS_TERM_CHAR The specified termination character was read.
VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Table 93: viRead() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because theresource identified by vi has

been locked for this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.
VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during transfer.
VI_ERROR_BERRt Bus error occurred during transfer.
VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid (due to attributes being set to an

inconsistent state).
VI_ERROR_NCIC The interface associated with the given vi is not currently the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC are deasserted).
VI_ERROR_ASRL_PARITY A parity error occurred during transfer.
VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.
VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was not read from the hardware

before the next character arrived.
VI_ERROR_IO An unknown I/O error occurred during transfer.

C example

if (viWrite(vi, (ViBuf) ”*idn?“, 5, VI_NULL) < VI_SUCCESS) return;
if (viRead(vi, (ViBuf), buffer, sizeof(buffer)--1, &retCnt)
< VI_SUCCESS) return;
buffer[retCnt] = ’\0’; // ensures null terminator in string

Operations

62

Comments
The viRead() operation synchronously transfers data. The data read is to be stored in the buffer represented by buf. This operation returns
only when the transfer terminates. Only one synchronous read operation can occur at any one time.

• A viRead() operation can complete successfully if one or more of the following conditions were met (it is possible to have one, two, or
all three ofnthese conditions satisfied at the same time):

• END indicator received.
• Termination character read.
• Number of bytes read is equal to count.

Condition 1: End indicator received

• If the following conditions are met, viRead() returns VI_SUCCESS regardless of whether the termination character is received or the
number of bytes read is equal to count.

• If an END indicator is received, and
• VI_ATTR_SUPPRESS_END_EN is VI_FALSE.

• If either of the following conditions are met, viRead() will not terminate because of an END condition (and therefore will not return
VI_SUCCESS). The operation can still complete successfully due to a termination character or reading the maximum number of bytes
requested.

• If VI_ATTR_SUPPRESS_END_EN is VI_TRUE
• If vi is a session to an ASRL INSTR resource, and VI_ATTR_ASRL_END_IN is VI_ASRL_END_NONE.

Condition 2: Termination character read

• If the following conditions are met, viRead() returns VI_SUCCESS_TERM_CHAR regardless of whether the number of bytes read is
equal to count.

• If no END indicator is received, and
• the termination character is read, and
• VI_ATTR_TERMCHAR_EN is VI_TRUE.

• Under the following condition, viRead() will not terminate because of reading a termination character (and therefore will not return
VI_SUCCESS_TERM_CHAR). The operation can still complete successfully due to reading the maximum number of bytes requested.

• If VI_ATTR_TERMCHAR_EN is VI_FALSE.
• If the following conditions are met, viRead() treats the value stored inVI_ATTR_TERMCHAR as an END indicator regardless of the

value of VI_ATTR_TERMCHAR_EN.

• If vi is a session to an ASRL INSTR resource, and
• VI_ATTR_ASRL_END_IN is VI_ASRL_END_TERMCHAR.

Condition 3: Number of Bytes Read Equals Count

• If the following conditions are met, viRead() returns VI_SUCCESS_MAX_CNT.

• If no END indicator is received, and
• no termination character is read, and
• the number of bytes read is equal to count.

• If you pass VI_NULL as the retCount parameter to the viRead() operation, the number of bytes transferred will not be returned. This
may be useful if it is only important to know whether the operation succeeded or failed.

Operations

TekVISA Programmer Manual 63

Table 94: Success code conditions for GPIB interfaces with ViRead()

TRUE FALSE Success Code
END received VI_ATTR_SUPPRESS_END_EN VI_SUCCESS
VI_ATTR_TERM_CHAR_EN END received VI_SUCCESS_TERM_CHAR
max bytes requested received END received VI_SUCCESS_TERM_CHAR

See also
Reading and Writing Data

viWrite (vi, buf, count, retCount)

viReadAsync (vi, buf, count, jobId)
Usage
Reads data synchronously from a device into the specified buffer

C format
ViStatus viReadAsync (ViSession vi, ViPBuf buf, ViUInt32 count, ViPJobId jobId)

Visual basic format
Not Applicable

Parameters
Table 95: viReadAsync() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
buf OUT Represents the location of a buffer to receive data from device.
count IN Number of bytes to be read.
jobId OUT Represents the location of a variable that will be set to the job identifier of this

asynchronous read operation.

Return values
Table 96: viReadAsync() completion codes

Completion codes Description
VI_SUCCESS Asynchronous read operation successfully queued.
VI_SUCCESS_SYNC Read operation performed synchronously.

Operations

64

Table 97: viReadAsync() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because theresource identified by vi has been
locked for this kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue read operation.

C example

// rwwait.cpp
//
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include ”visa.h“
// viReadAsync/viWriteAsync example --
// These commands can potentially decrease test time by allowing
// several read or write commands to happen in parallel.
int main(int argc, char* argv[]){
ViSession rm, vi[2];
ViJobId jobid[2];
ViStatus status;
char string[2][256];
ViEventType eventType[2];
ViEvent event[2];
int i;
// clear strings
for (i = 0; i < 2; i++) {
memset(string[i], 0, 256);
}
// Open the default RM
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Open multiple devices
status = viOpen(rm, ”GPIB0::1::INSTR“, NULL, NULL, &vi[0]);
if (status < VI_SUCCESS) goto error;
status = viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL,
&vi[1]);
if (status < VI_SUCCESS) goto error;
// Enable waiting on the events
for (i = 0; i < 2; i++) {
status = viEnableEvent(vi[i], VI_EVENT_IO_COMPLETION,
VI_QUEUE, VI_NULL);
if (status < VI_SUCCESS) goto error;
}
// Write commands to several devices (this allows
// several writes to be done in parallel)
for (i = 0; i < 2; i++) {
status = viWriteAsync(vi[i],(ViBuf) ”*idn?“,

Operations

TekVISA Programmer Manual 65

5, &jobid[i]);
if (status < VI_SUCCESS) goto error;
}
// Wait for completion on all of the devices
for (i = 0; i < 2; i++) {
viWaitOnEvent(vi[i], VI_EVENT_IO_COMPLETION,
INFINITE, &eventType[i], &event[i]);
}
// Queue the read for all the devices (this allows
// several reads to be done im parallel)
for (i = 0; i < 2; i++) {
status = viReadAsync(vi[i], (ViBuf) string[i],
256, &jobid[i]);
if (status < VI_SUCCESS) goto error;
}
// Wait for all the reads to complete
for (i = 0; i < 2; i++) {
viWaitOnEvent(vi[i], VI_EVENT_IO_COMPLETION,
INFINITE, &eventType[i], &event[i]);
}
// Write out the *idn? strings.
for (i = 0; i < 2; i++) {
printf(”%d: %s\n“, i, string[i]);
}
// Cleanup and exit
for (i = 0; i < 2; i++) {
status = viDisableEvent(vi[i], VI_EVENT_IO_COMPLETION,
VI_QUEUE);
if (status < VI_SUCCESS) goto error;
}
viClose(rm);
return 0;
error:
viStatusDesc(rm, status, string[0]);
fprintf(stderr, ”Error: %s\n“, (ViBuf) string[0]);
return 0;
}

Comments
The viReadAsync() operation asynchronously transfers data. The data read is to be stored in the buffer represented by buf. This operation
normally returns before the transfer terminates.

• Before calling this operation, you should enable the session for receiving I/O completion events. After the transfer has completed, an
I/O completion event is posted.

• The operation returns jobId, which you can use either

• with viTerminate() to abort the operation, or
• with an I/O completion event to identify which asynchronous read operation completed.

Table 98: Special value for jobId parameter with viReadAsync()

Value Description
VI_NULL Do not return a job identifier. This option may be useful if only one asynchronous operation will be pending

at a given time.

Operations

66

• Since an asynchronous I/O request could complete before viReadAsync() returns, and the I/O completion event can be distinguished
based on the job identifier, an application must be made aware of the job ID before the first moment that the I/O completion event
could possibly occur. Setting jobId before the data transfer even begins ensures that an application can always match the jobId with the
VI_ATTR_JOB_ID attribute of the I/O completion event.

• If multiple jobs are queued at the same time on the same session, an application can use the jobId to distinguish the jobs, as they are
unique within a session.

• The viReadAsync() operation may be implemented synchronously, which could be done by using the viRead() operation. This means
that an application can use the asynchronous operations transparently, even if a low-level driver supports only synchronous data
transfers. If viReadAsync() is implemented synchronously and a given invocation is valid, it returns VI_SUCCESS_SYNC and all status
information is returned in a VI_EVENT_IO_COMPLETION. Status codes are the same as those listed for viRead().

• The status code VI_ERROR_RSRC_LOCKED can be returned either immediately or from the VI_EVENT_IO_COMPLETION event.
• The contents of the output buffer pointed to by buf are not guaranteed to be valid until the VI_EVENT_IO_COMPLETION event occurs.
• For each successful call to viReadAsync(), there is one and only one VI_EVENT_IO_COMPLETION event occurrence.
• If the jobId parameter returned from viReadAsync() is passed to viTerminate() and a VI_EVENT_IO_COMPLETION event has not yet

occurred for the specified jobId, the viTerminate() operation raises a VI_EVENT_IO_COMPLETION event on the given vi, and the
VI_ATTR_STATUS field of that event is set to VI_ERROR_ABORT.

See also
Asynchronous Read/Write

viWriteAsync (vi, buf, count, jobId)

viTerminate (vi, degree, jobId)

viReadSTB (vi, status)

Usage
Reads a status byte of the service request.

C format
ViStatus viReadSTB (ViSession vi, ViPUInt16 status)

Visual basic format
viReadSTB (ByVal vi As Long, ByVal status As Integer) As Long

Parameters
Table 99: viReadSTB() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
status OUT Service request status byte.

Operations

TekVISA Programmer Manual 67

Return values
Table 100: viReadSTB() completion codes

Completion codes Description
VI_SUCCESS Operation completed successfully.

Table 101: viReadSTB() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has

been locked for this kind of access.
VI_ERROR_SRQ_NOCCURRED Service request has not been received for the session.
VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_NCIC The interface associated with the given vi is not currently the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC are deasserted).
VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid (due to attributes being set to an

inconsistent state).

C example

ViUInt16 stb;
viReadSTB(vi, &stb);

Comments
The viReadSTB() operation reads a service request status from a service requester (the message-based device). For example, on the
IEEE 488.2 interface, the message is read by polling devices; for other types of interfaces, a message is sent in response to a service
request to retrieve status information.

• For a serial device, if VI_ATTR_IO_PROT is VI_ASRL488, the device is sent the string “*STB?\n”, and then the device’s status byte is
read.

• This operation is not valid for a serial device if VI_ATTR_IO_PROT is VI_NORMAL. In that case, viReadSTB() returns
VI_ERROR_INV_SETUP.

• If the status information is only one byte long, the most significant byte is returned with the zero value.
• If the service requester does not respond in the actual timeout period, VI_ERROR_TMO is returned.

See also
Status/Service Request

Operations

68

VI_ATTR_IO_PROT

viReadToFile (vi, fileName, count, retCount)
Usage
Reads data synchronously from a device, and stores the transferred data in a file.

C format
ViStatus viReadToFile (ViSession vi, ViString fileName, ViUInt32 count,
ViUInt32retCount)

Visual basic format
viReadToFile(By Val vi As Long, By Val fileNameAs String, By Val count As Long, By
Val retCount As Long) As Long

Parameters
Table 102: viReadToFile() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
fileName IN Name of the file to which data will be written.
count IN Number of bytes to be read.
retCount OUT Number of bytes actually transferred.

Return values
Table 103: viReadToFile() completion codes

Completion codes Description
VI_SUCCESS The operation completed successfully and the END indicator was received (for interfaces

that have END indicators).
VI_SUCCESS_TERM_CHAR The specified termination character was read.
VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Table 104: viReadToFile() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has

been locked for this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.
Table continued…

Operations

TekVISA Programmer Manual 69

Error codes Description
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.
VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during transfer.
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_INV_SETUP Unable to start read operation because setup is not valid (due to attributes being set to an

inconsistent state).
VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC are deasserted).
VI_ERROR_ASRL_PARITY A parity error occurred during transfer.
VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.
VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was not read from the hardware

before the next character arrived.
VI_ERROR_IO An unknown I/O error occurred during transfer.
VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file. Possible reasons include an not

valid path or lack of access right.
VI_ERROR_FILE_IO An error occurred while accessing the specified file.
VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

C example

ViSession rm, vi;
ViStatus status = VI_SUCCESS;
ViUInt32 retCount;
if (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, “GPIB8::1::INSTR”, NULL, NULL, &vi) < VI_SUCCESS)
return;
status = viReadToFile(vi,“curve.bin”,20,&retCount);
viClose(vi);
viClose(rm);

Comments
This read operation synchronously transfers data. The file specified in fileName is opened in binary write-only mode. If the value of
VI_ATTR_FILE_APPEND_EN is VI_FALSE, any existing contents are destroyed; otherwise, the file contents are preserved. The data read
is written to the file. This operation returns only when the transfer terminates.

This operation is useful for storing raw data to be processed later.

Table 105: Special value for the retCount parameter with viReadToFile()

Error codes Description
VI_NULL Do not return the number of bytes transferred.

See also
Reading and Writing Data

viRead (vi, buf, count, retCount)

Operations

70

viWriteFromFile (vi, fileName, count, retCount)

viScanf (vi, readFmt, <arg1, arg2,...>)
Usage
Reads and formats data from a device using the optional variable-length argument list.

C format
ViStatus viScanf (ViSession vi, ViConstString readFmt, ...)

Visual basic format
Not Applicable

Parameters
Table 106: viScanf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
readFmt IN String describing the format for arguments.
<arg1, arg2,...> OUT Optional arguments into which the data is read and the format string is applied.

Return values
Table 107: viScanf() completion codes

Completion codes Description
VI_SUCCESS Data is successfully read and formatted into arg parameters

Table 108: viScanf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform read operation because of I/O error.
VI_ERROR_TMO Timeout expired before read operation completed.
VI_ERROR_INV_FMT A format specifier in the readFmt string is not valid.
VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system

resources.

Operations

TekVISA Programmer Manual 71

C example

// Get first char and validate
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
assert(c == ’#’);
// Get width of element field.
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
assert(c >= ’0’ && c <= ’9’);
// Read element characters
count = c -- ’0’;
for (i = 0; i < count; i++) {
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
assert(c >= ’0’ && c <= ’9’);
}
// Read waveform into allocated storage
ptr = (double*) malloc(*elements*sizeof(double));
for (i = 0; i < *elements; i++) {
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
ptr[i] = (((double) c) -- yoffset) * ymult;
}
return ptr;

Comments
The viScanf() operation receives data from a device, formats it by using the format string, and stores the resulting data in the arg
parameter list. This operation is useful for storing raw data to be processed later.

• The viRead() operation is used for the actual low-level read from the device. As a result, you should not use the viRead() and viScanf()
operations in the same session.

Note: Because the prototype for this function cannot provide complete type-checking, remember that all output parameters
must be passed by reference.

• The format string can have format specifier sequences, white characters, and ordinary characters.

• The white characters—blank, vertical tabs, horizontal tabs, form feeds, new line/linefeed, and carriage return—are ignored except
in the case of %c and %[].

• All other ordinary characters except % should match the next character read from the device.
• The format string consists of a %, followed by optional modifier flags, followed by one of the format codes in that sequence. It is of the

form %[modifier]format code

• where the optional modifier describes the data format,
• while format code indicates the nature of data (data type).

• One and only one format code should be performed at the specifier sequence. A format specification directs the conversion to the
next input arg. The results of the conversion are placed in the variable that the corresponding argument points to, unless the *
assignment-suppressing character is given. In such a case, no arg is used and the results are ignored.

• The viScanf() operation accepts input until an END indicator is read or all the format specifiers in the readFmt string are satisfied. Thus,
detecting an END indicator before the readFmt string is fully consumed will result in ignoring the rest of the format string. Also, if some
data remains in the buffer after all format specifiers in the readFmt string are satisfied, the data will be kept in the buffer and will be
used by the next viScanf() operation.

Operations

72

• When viScanf() times out, the next call to viScanf() will read from an empty buffer and force a read from the device. Notice that when
an END indicator is received, not all arguments in the format string may be consumed. However, the operation still returns a successful
completion code. The following two tables describe optional modifiers that can be used in a format specifier sequence.

ANSI C standard modifiers
Table 109: ANSI C standard modifiers used with viScanf()

Modifier Supported with format code Description
An integer specifying field width. %s, %c, %[] format codes It specifies the maximum field width that the

argument will take. A ‘#’ may also appear
instead of the integer field width, in which
case the next arg is a reference to the field
width. This arg is a reference to an integer
for %c and %s. The field width is not allowed
for %d or %f.

A length modifier (‘h,’ ‘l,’ ‘L,’ ‘z,’ or ‘Z’). z and
Z are not ANSI C standard modifiers.

h (d, b format codes) l (d, f, b format codes)
L (f format code) z (b format code) Z (b
format code)

The argument length modifiers specify one
of the following:

• The h modifier promotes the argument
to be a reference to a short integer or
unsigned short integer, depending on the
format code.

• The l modifier promotes the argument to
point to a long integer or unsigned long
integer.

• The L modifier promotes the argument to
point to a long double floats parameter.

• The z modifier promotes the argument to
point to an array of floats.

• The Z modifier promotes the argument to
point to an array of double floats.

* All format codes An asterisk (*) acts as the assignment
suppression character. The input is not
assigned to any parameters and is
discarded.

Enhanced modifiers to ANSI C standards
Table 110: Enhanced modifiers to ANSI C standards used with viScanf()

Modifier Supported with format Code description

A comma (,) followed by an integer n, where
n represents the array size.

%d and %f only The corresponding argument is interpreted
as a reference to the first element of an
array of size n. The first n elements of this
list are printed in the format specified by
the format code. A number sign (#) may
be present after the comma (,) modifier, in
which case an extra arg is used. This arg
must be an integer representing the array
size of the given type.

Operations

TekVISA Programmer Manual 73

Format codes
ANSI C format codes

c Argument type: A reference to a character.

Table 111: Modifiers used with argument type c with viScanf()

Modifier Interpretation
Default functionality A character is read from the device and stored in the parameter. field width field width number of

characters are read and stored at the reference location (the default field width is 1). No NULL
character is added at the end of the data block.

Note: This format code does not ignore white space in the device input stream.

d Argument type: A reference to an integer.

Table 112: Modifiers used with argument type d with viScanf()

Modifier Interpretation
Default functionality Characters are read from the device until an entire number is read. The number read may

be in either IEEE 488.2 formats <DECIMAL NUMERIC PROGRAM DATA>, also known as
NRf; flexible numeric representation (NR1, NR2, NR3...); or <NON-DECIMAL NUMERIC
PROGRAM DATA> (#H, #Q, and #B).

field width The input number will be stored in a field at least this wide.
Length modifier l arg is a reference to a long integer.
Length modifier h arg is a reference to a short integer. Rounding is performed according to IEEE 488.2 rules

(0.5 and up).
, array size arg points to an array of integers (or long or short integers, depending on the length

modifier) of size array size. The elements of this array should be separated by commas.
Elements will be read until either array size number of elements are consumed or they are
no longer separated by commas.

s Argument type: A reference to a string.

Table 113: Modifiers used with argument type s with viScanf()

Modifier Interpretation
Default functionality All leading white space characters are ignored. Characters are read from the device into the string until a

white space character is read.
field width This flag gives the maximum string size. If the field width contains a number sign (#), two arguments are

used. The first argument read is a pointer to an integer specifying the maximum array size. The second
should be a reference to an array. In case of field width characters already read before encountering a white
space, additional characters are read and discarded until a white space character is found. In case of # field
width, the actual number of characters read are stored back in the integer pointed to by the first argument.

Enhanced format codes

bArgument type: A reference to a data array.

Operations

74

Table 114: Modifiers used with argument type b with viScanf()

Modifier Interpretation
Default functionality The data must be in IEEE 488.2 <ARBITRARY BLOCK PROGRAM DATA>format. The format specifier

sequence should have a flag describing the field width, which will give a maximum count of the number
of bytes (or words or longwords, depending on length modifiers) to be read from the device. If the
field width contains a # sign, two arguments are used. The first arg read is a pointer to a long integer
specifying the maximum number of elements that the array can hold. The second arg should be a
reference to an array. Also, the actual number of elements read is stored back in the first argument. In
the absence of length modifiers, the data is assumed to be of byte-size elements. In some cases, data
might be read until an END indicator is read.

Length modifier h arg points to an array of 16-bit words, and count specifies the number of words. Data that is read is
assumed to be in IEEE 488.2 byte ordering. It will be byte swapped and padded as appropriate to native
computer format.

Length modifier I arg points to an array of 32-bit longwords, and count specifies the number of longwords. Data that is
read is assumed to be in IEEE 488.2 byte ordering. It will be byte swapped and padded as appropriate
to native computer format.

Length modifier z arg points to an array of floats, and count specifies the number of floating point numbers. Data that is
read is an array of 32-bit IEEE 754 format floating point numbers.

Length modifierZ arg is a reference to a long double number.
, array size arg points to an array of doubles, and the count specifies the number of floating point numbers. Data

that is read is an array of 64-bit IEEE 754 format floating point numbers.

t Argument type: A reference to a string.

Table 115: Modifiers used with argument type t with viScanf()

Modifier Interpretation
Default functionality Characters are read from the device until the first END indicator is received. The character on which the

END indicator was received is included in the buffer.
field width This flag gives the maximum string size. If an END indicator is not received before field width number of

characters, additional characters are read and discarded until an END indicator arrives. #field width has
the same meaning as in %s.

T Argument type: A reference to a string.

Table 116: Modifiers used with argument type T with viScanf()

Modifier Interpretation
Default functionality Characters are read from the device until the first linefeed character (\n) is received. The linefeed character

is included in the buffer.
field width This flag gives the maximum string size. If a linefeed character is not received before field width number of

characters, additional characters are read and discarded until a linefeed character arrives. #field width has
the same meaning as in %s.

y Argument type: A location of a block of binary data.

Operations

TekVISA Programmer Manual 75

Table 117: Modifiers used with argument type y with viScanf()

Modifier Interpretation
Default functionality The data block is read as raw binary data. The format specifier sequence should have a flag describing

the array size, which will give a maximum count of the number of bytes (or words or longwords,
depending on length modifiers) to be read from the device. If the array size contains a # sign, two
arguments are used. The first argument read is a pointer to a long integer that specifies the maximum
number of elements that the array can hold. The second argument should be a reference to an array.
Also, the actual number of elements read is stored back in the first argument. In the absence of length
modifiers, the data is assumed to be byte-size elements. In some cases, data might be read until an
END indicator is read.

Length modifier h The data block is assumed to be a reference to an array of unsigned short integers (16 bits). The count
corresponds to the number of words rather than bytes. If the optional “!ol” modifier is present, the data
read is assumed to be in little endian format; otherwise, the data read is assumed to be in standard
IEEE 488.2 format. The data will be byte swapped and padded as appropriate to native computer
format.

Length modifier I The data block is assumed to be a reference to an array of unsigned long integers (32 bits). The count
corresponds to the number of longwords rather than bytes. If the optional “!ol” modifier is present,
the data read is assumed to be in little endian format; otherwise, the data read is assumed to be
in standard IEEE 488.2 format. The data will be byte swapped and padded as appropriate to native
computer format.

Byte order modifier!ob The data being read is assumed to be in standard IEEE 488.2 (big endian) format. This is the default
behavior if neither !ob nor !ol is present.

Byte order modifier !ol The data being read is assumed to be in little endian format.

• For ANSI C compatibility, VISA also supports the following conversion codes for input codes: ’i,’ ’o,’ ’u,’ ’n,’ ’x,’ ’X,’ ’e,’ ’E,’ ’g,’ ’G,’ ’p,’ ’
[...],’ and ’[^...].’ For further explanation of these conversion codes, see the ANSI C Standard.

See also
Reading and Writing Formatted Data

viPrintf (vi, writeFmt, <arg1, arg2, ...>)

viQueryf (vi, writeFmt, readFmt, <arg1, arg2, ...>)

VI_ATTR_RD_BUF_OPER_MODE

viSetAttribute (vi, attribute, attrState)

Usage
Sets the state of an attribute for the specified session, event, or find list.

C format
ViStatus viSetAttribute(ViObject vi, ViAttr attribute, ViAttrState attrState)

Visual Basic Format
viSetAttribute (ByVal vi As Long, ByVal attribute As Long, ByVal attrState As
Long)As Long

Operations

76

Parameters
Table 118: viScanf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
attribute IN Attribute for which the state is to be modified.
attrState IN The state of the attribute to be set for the specified resource. The interpretation of the

individual attribute value is defined by the resource.

Return values
Table 119: viScanf() completion codes

Completion codes Description
VI_SUCCESS Attribute value set successfully.
VI_WARN_NSUP_ATTR_STATE Although the specified attribute state is valid, it is not supported by this implementation.

Table 120: viSetAttribute() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced session, event, or find list.
VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid, or is not supported as defined by the

session, event, or find list
VI_ERROR_ATTR_READONLY The specified attribute is read-only.

C example

// Set timeout to 5 seconds
status = viSetAttribute(vi, VI_ATTR_TMO_VALUE, 5000);
if (status < VI_SUCCESS) goto error;

Comments
The viSetAttribute() operation is used to modify the state of an attribute for the specified object.

• Both VI_WARN_NSUP_ATTR_STATE and VI_ERROR_NSUP_ATTR_STATE indicate that the specified attribute state is not
supported.

• A resource normally returns the error code VI_ERROR_NSUP_ATTR_STATE when it cannot set a specified attribute state.
• The completion code VI_WARN_NSUP_ATTR_STATE is intended to alert the application that although the specified optional

attribute state is not supported, the application should not fail. One example is attempting to set an attribute value that would
increase performance speeds. This is different from attempting to set an attribute value that specifies required but nonexistent
hardware, or a value that would change assumptions a resource might make about the way data is stored or formatted (such as
byte order)

Operations

TekVISA Programmer Manual 77

See also
Setting and Retrieving Attributes

viGetAttribute (vi, attribute, attrState)

viSetBuf (vi, mask, size)

Usage
Sets the size of the formatted I/O and/or serial buffers.

C format
ViStatus viSetBuf(ViSession vi, ViUInt16 mask, ViUInt32 size)

Visual basic format
viSetBuf (ByVal vi As Long, ByVal mask As Integer, ByVal size As Long) As Long

Parameters
Table 121: viSetBuf() parameters

Name Direction Description

vi IN Unique logical identifier to a session.

mask IN Specifies the type of buffer.
size IN The size to be set for the specified buffer(s)

Return values
Table 122: viSetBuf() completion codes

Completion codes Description
VI_SUCCESS Buffer size set successfully.
VI_WARN_NSUP_BUF The specified buffer is not supported.

Table 123: viSetBuf() error codes

Error codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_ALLOC The system could not allocate the buffers of the specified size because of insufficient
system resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the given mask.

Operations

78

C example
viSetBuf(vi, VI_READ_BUF, 1024*10); // set buffer to 10K

Comments
The viSetBuf() operation changes the buffer size of the read and/or write buffer for formatted I/O and/or serial communication. The mask
parameter specifies the buffer for which to set the size. The mask parameter can specify multiple buffers by bit-ORing any of the following
values together.

Table 124: Flags used with mask parameter with viSetBuf()

Flag Interpretation

VI_READ_BUF Formatted I/O read buffer.

VI_WRITE_BUF Formatted I/O write buffer.
VI_ASRL_IN_BUF Serial communication receive buffer.
VI_ASRL_OUT_BUF Serial communication transmit buffer.

• A call to viSetBuf() flushes the session’s related read/write buffer). Although you can explicitly flush the buffers by making a call to
viFlush(), the buffers are flushed implicitly under some conditions. These conditions vary for the viPrintf() and viScanf() operations.

• Since not all serial drivers support user-defined buffer sizes, VISA may not be able to control this feature. If an application requires a
specific buffer size for performance reasons, but VISA cannot guarantee that size, we recommend you use some form of handshaking
to prevent overflow conditions.

See also
Reading and Writing Formatted Data

viFlush (vi, mask)

viSPrintf (vi, buf, writeFmt, <arg1, arg2,...>)

Usage
Formats and writes data to a user-specified buffer using an optional variable-length argument list.

C format
ViStatus viSPrintf (ViSession vi, ViPBuf buf, ViConstString writeFmt, ...)

Visual basic format
Not Applicable

Parameters
Table 125: viSPrintf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
Table continued…

Operations

TekVISA Programmer Manual 79

Name Direction Description
buf OUT Buffer where data is to be written.
writeFmt IN The format string to apply to arguments.
<arg1,arg2,...> IN Optional arguments on which the format string is applied. The formatted data is written

to the specified buffer.

Return values
Table 126: viSPrintf() completion codes

Completion codes Description
VI_SUCCESS Parameters were successfully formatted.

Table 127: viSPrintf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is not valid.
VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system resources.

C example

#include <stdio.h>
#include <string.h>
#include <visa.h>
#include <stdarg.h>
// This example opens a specific GPIB device, sets the data start
// and stop locations and logs the command sent to c:\logfile.txt
int main(int argc, char* argv[])
{
ViSession rm = VI_NULL, vi = VI_NULL;
ViStatus status;
ViChar buffer[256];
const long start = 1;
const long stop = 500;
FILE* log = fopen(”C:\\logfile.txt“, ”w“);
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Open the gpib device at primary address 1, gpib board 8
status = viOpen(rm, ”GPIB0::1::INSTR“, VI_NULL, VI_NULL,
&vi);
if (status < VI_SUCCESS) goto error;
status = viSPrintf(vi, (ViBuf) buffer, “data:start %d;

Operations

80

data:stop %d”, start, stop);
if (status < VI_SUCCESS) goto error;
if (log != NULL)
fprintf(log, ”%s’n“, buffer);
status = viWrite(vi, (ViBuf) buffer, strlen(buffer),
VI_NULL);
if (status < VI_SUCCESS) goto error;
// Clean up
if (log != NULL)
fclose(log);
viClose(vi); // Not needed, but makes things a bit more
// understandable
viClose(rm);
return 0;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, ”failure: %s\n“, buffer);
if (rm != VI_NULL) {
viClose(rm);
}
return 1;
}

Comments
The viSPrintf() operation is similar to viPrintf(), except that the output is not written to the device; it is written to the user-specified buffer.
This output buffer will be NULL terminated.

If this operation outputs an END indicator before all the arguments are satisfied, the rest of the writeFmt string is ignored and the buffer
string is still terminated by a NULL.

See also
Reading and Writing Formatted Data

viSScanf (vi, readFmt, <arg1, arg2,...>)

viSScanf (vi, buf, readFmt, <arg1, arg2,...>)

Usage
Reads and formats data from a user-specified buffer using an optional variable-length argument list.

C format
ViStatus viSScanf (ViSession vi, ViConstBuf buf, ViConstString readFmt, ...)

Visual basic format
Not Applicable

Operations

TekVISA Programmer Manual 81

Parameters
Table 128: viSScanf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
readFmt IN String describing the format for arguments.
<arg1,arg2,...> OUT Optional arguments into which the data is read and to which the format string is applied.

Return values
Table 129: viSScanf() completion codes

Completion codes Description
VI_SUCCESS Data is successfully read and formatted into arg parameters.

Table 130: viSScanf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform read operation because of I/O error.
VI_ERROR_TMO Timeout expired before read operation completed.
VI_ERROR_INV_FMT A format specifier in the readFmt string is not valid.
VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system resources.

C example

#include <stdio.h>
#include <string.h>
#include <visa.h>
#include <stdarg.h>
// This example opens a specific GPIB device, and scans
// 10 comma--separated integers into a long array
int main(int argc, char* argv[])
{
ViSession rm = VI_NULL, vi = VI_NULL;
ViStatus status;
char buffer[256];
long scanArray[10];
ViChar *scanStr = ”0,1,2,3,4,5,6,7,8,9“;
int i;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

Operations

82

// Open the gpib device at primary address 1, gpib board 8
status = viOpen(rm, ”GPIB0::1::INSTR“, VI_NULL, VI_NULL,
&vi);
if (status < VI_SUCCESS) goto error;
// Read a 10--element comma--separated array into a long array
status = viSScanf(vi, (ViBuf) scanStr, “%,10d”, scanArray);
if (status < VI_SUCCESS) goto error;
for (i = 0; i < 10; i++) {
printf(”%d “, scanArray[i]);
}
printf(”\n“);
viClose(vi); // Not needed, but makes things a bit more
// understandable
viClose(rm);
return 0;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, ”failure: %s\n“, buffer);
if (rm != VI_NULL) {
viClose(rm);
}
return 1;
}

Comments
The viSScanf() operation is similar to viScanf(), except that the data is read from a user-specified buffer rather than from a device.

See also
Reading and Writing Formatted Data

viSPrintf (vi, buf, writeFmt, <arg1, arg2,...>)

viStatusDesc (vi, status, desc)

Usage
Retrieves a user-readable description of the specified status code.

C format
ViStatus viStatusDesc (ViObject vi, ViStatus status,ViString desc)

Visual basic format
viStatusDesc (ByVal vi As Long, ByVal statusAs Long, ByVal desc As String) As Long

Operations

TekVISA Programmer Manual 83

Parameters
Table 131: viStatusDesc() parameters

Name Direction Description
vi IN Unique logical identifier to a session, event, or find list.
status IN Status code to interpret.
desc OUT The user-readable string interpretation of the status code passed to the operation.

Return values
Table 132: viStatusDesc() completion codes

Completion codes Description
VI_SUCCESS Description successfully returned.
VI_WARN_UNKNOWN_STATUS The status code passed to the operation could not be interpreted.

C example

// Report error
viStatusDesc(vi, status, buffer);
fprintf(stderr, ”failure: %s\n“, buffer);

Comments
The viStatusDesc() operation is used to retrieve a user-readable string that describes the status code presented.

If the string cannot be interpreted, the operation returns the warning code VI_WARN_UNKNOWN_STATUS. However, the output string
desc is valid regardless of the status return value.

Note: The size of the desc parameter should be at least 256 bytes.

See also
Appendix B: Completion and Error Codes

viTerminate (vi, degree, jobId)

Usage
Terminates normal execution of an asynchronous read or write operation.

C format
ViStatus viTerminate(ViObject vi, ViUInt16 degree,ViJobId jobId)

Visual basic format
Not Applicable

Operations

84

Parameters
Table 133: viTerminate() parameters

Name Direction Description
vi IN Unique logical identifier to an object.
degree IN VI_NULL
jobId IN Specifies an operation identifier.

Return values
Table 134: viTerminate() completion codes

Completion codes Description
VI_SUCCESS Request serviced successfully.

Table 135: viTerminate() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_INV_JOB_ID Specified job identifier is not valid.

This message is returned If the operation associated with the specified jobId has already
completed.

VI_ERROR_INV_DEGREE Specified degree is not valid.

C example
viTerminate(vi, VI_NULL, jobid);

Comments
The vi Terminate() operation is used to request a session to terminate normal execution of an operation, as specified by the jobId
parameter:

• The jobId parameter is a unique value generated from each call to an asynchronous operation.
• If a user passes VI_NULL as the jobId value to viTerminate(), VISA aborts the specified asynchronous operation and the resulting I/O

completion event contains the status code VI_ERROR_ABORT.

See also
Asynchronous Read/Write

viReadAsync (vi, buf, count, jobId)

viWriteAsync (vi, buf, count, jobId)

viUninstallHandler (vi, eventType, handler, userHandle)

Operations

TekVISA Programmer Manual 85

Usage
Uninstalls callback handlers for the specified event.

C format
ViStatus viUninstallHandler (ViSession vi, ViEventType eventType, ViHndlr handler,
ViAddr userHandle)

Visual basic format
Not Applicable

Parameters
Table 136: viTerminate() parameters

Name Direction Description
vi IN Unique logical identifier to an object.
eventType IN Logical event identifier.
handler IN Interpreted as a valid reference to a handler to be uninstalled by a client application.
userHandle IN A value specified by an application that can be used for identifying handlers uniquely in a

session for an event.

Return values
Table 137: viUninstallHandler() completion codes

Completion codes Description
VI_SUCCESS Event handler successfully uninstalled.

Table 138: viUninstallHandler() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user context value (or both) does not match

any installed handler.
VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event.

C example

// Cleanup and exit
status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
if (status < VI_SUCCESS) goto error;
status = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceReqEventHandler, NULL);
if (status < VI_SUCCESS) goto error;

Operations

86

viClose(vi);
viClose(rm);

Comments
The viUninstallHandler() operation allows applications to uninstall handlers for events on sessions.

• Applications should also specify the value in the userHandle parameter that was passed while installing the handler. VISA identifies
handlers uniquely using the handler reference and this value.

• All the handlers, for which the handler reference and the userhandle value matches, are uninstalled.

Table 139: Special values for handler parameter with viUninstallHandler()

Value Description
VI_ANY_HNDLR Causes the operation to uninstall all the handlers with thematching value in the userHandle

parameter.

See also
Handling Events

viInstallHandler (vi, eventType, handler, userHandle)

viUnlock (vi)

Usage
Relinquish a lock on the specified resource.

C format
ViStatus viUnlock (ViSession vi)

Visual basic format
viUnlock (ByVal vi As Long) As Long

Parameters
Table 140: viUnlock() parameters

Name Direction Description
vi IN Unique logical identifier to a session.

Return values
Table 141: viUninstallHandler() completion codes

Completion codes Description
VI_SUCCESS Lock successfully relinquished.
VI_SUCCESS_NESTED_EXCLUSIVE Call succeeded, but this session still has nested exclusive locks.
VI_SUCCESS_NESTED_SHARED Call succeeded, but this session still has nested shared locks.

Operations

TekVISA Programmer Manual 87

Table 142: viUnlock() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the resource.

C example

ViSession rm, vi;
char string[256];
ViUInt32 retCnt;
int i = 0;
if (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi) < VI_SUCCESS)
return;
for (i = 1; i < 100; i++) {
viLock(vi, VI_EXCLUSIVE_LOCK, VI_TMO_INFINITE, NULL,
NULL);
if (viWrite(vi, (ViBuf) ”ch1:scale?“, 10, &retCnt)
< VI_SUCCESS) return;
if (viRead(vi, (ViBuf) string, 256, &retCnt)
< VI_SUCCESS) return;
printf(”%d: scale %s“, i, string);
viUnlock(vi);
}

Comments
This operation is used to relinquish the lock previously obtained using the viLock() operation.

See also
Locking and Unlocking Resources

viLock (vi, lockType, timeout, requestedKey, accessKey)

viUsbControlIn (vi, bmRequestType, bRequest, wValue, wIndex, wLength, buffer,
retCount)

Usage
Request arbitrary data from a USB device on the default control port.

C format
ViStatus viUsbControlIn (ViSession vi, ViInt16 bmRequestType, ViInt16 bRequest,
ViUInt16 wValue, ViUInt16 wIndex, ViUInt16 wLength, Unsigned char [] buffer,
ViUInt16 retCount);

Operations

88

Visual basic format
viUsbControlIn (ByVal vi As Long, ByVal bmRequestType As Integer, ByVal bRequest
As Integer, ByVal wValue As Integer, ByVal wIndex As Integer, ByVal wLength As
Integer, buffer As Byte, retCount As Integer) As Long

Parameters
Table 143: viUsbContrlIn() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
bmRequest-Type IN The bmRequestType parameter of the setup stage of a USB control transfer. Refer to the

USB specification for further details.
bRequest IN The bRequest parameter of the setup stage of a USB control transfer.
wValue IN The wValue parameter of the setup stage of a USB control transfer.
wIndex IN The wIndex parameter of the setup stage of a USB control transfer. This is usually the

index of the interface or endpoint.
wLength IN The wLength parameter of the setup stage of a USB control transfer. This value also

specifies the size of the data buffer to receive the data from the optional data stage of the
control transfer.

buffer OUT The data buffer that receives the data from the optional data stage of the control transfer.
This is ignored if wLength is 0.

retCount OUT Number of bytes actually transferred in the optional data stage of the control transfer. This
parameter may be VI_NULL if you do not need this information.

Return values
Table 144: viUsbContrlIn() completion codes

Completion codes Description
VI_SUCCESS Operation completed successfully.

Table 145: viUsbContrlIn() error codes

Error codes Description
VI_ERROR_INV_OBJECT The given session reference is invalid.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been

locked for this kind of access.
VI_ERROR_TMO Timeout expired before the operation completed.
VI_ERROR_INV_SETUP Unable to start the write operation because the setup is invalid (due to attributes being set

to an inconsistent state).
VI_ERROR_IO An unknown I/O error occurred during transfer.
VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.
VI_ERROR_INV_PARAMETER The value of some parameter, which parameter is unknown, is invalid.
VI_ERROR_INV_MASK The bmRequestType parameter contains an invalid mask.

Operations

TekVISA Programmer Manual 89

C example

/#include “stdafx.h”
#include <stdio.h>
#include <memory.h>
#include <visa.h>
#define GET_CAPABILITIES 0x07
#define USB_DIR_IN 0x80
#define USB_TYPE_CLASS 0x01 << 5
#define USB_RECIP_INTERFACE 0x01
#define GET_CAPABILITIES_RESPONSE_SIZE 0x18
int _tmain(int argc, _TCHAR* argv[])
{
ViSession rm = VI_NULL, vi = VI_NULL;
ViStatus status;
ViChar buffer[256];
ViInt16 bmRequestType = USB_DIR_IN | USB_TYPE_CLASS |
USB_RECIP_INTERFACE;
ViInt16 bRequest = GET_CAPABILITIES;
ViUInt16 wValue = 0x00;
ViUInt16 wIndex = 0x00;
ViUInt16 wLength = GET_CAPABILITIES_
RESPONSE_SIZE;
ViUInt16 RetCount = 0;
bool bTalk = false;
bool bListen = false;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Open a VISA session to the USB device
status = viOpen(rm, ”USB0::1689::1025::Q10033::0::INSTR”, VI_NULL,
VI_NULL, &vi);
//Note: “USB0::1689::1025::Q10033::0::INSTR” is a VISA descriptor for
specific USBTMC instrument.
// Please change this to a valid VISA descriptor name for your USBTMC
instrument.
if (status < VI_SUCCESS) goto error;
status = viUsbControlIn (vi, bmRequestType, bRequest, wValue, wIndex,
wLength, (ViPBuf) buffer, &RetCount);
if (status < VI_SUCCESS) goto error;
if((buffer[4] & 0x02) == 1)
{
printf(“The Device is Talk Only.\n”);
bTalk = true;
}
if((buffer[4] & 0x01) == 1)
{
printf(“The Device is Listen Only.\n”);
bListen = true;
}
if((bTalk == false) && (bListen == false))
{
printf(“The Device is capable of both talk & listen.\n”);

Operations

90

}
// Clean up
viClose(vi); // Not needed, but makes things a bit more understandable
viClose(rm);
return 0;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n”, buffer
if (rm != VI_NULL) {
viClose(rm);
}
return 0;

Comments
This operation can be used to request arbitrary data from a USB device on the default control port.

See also
viUsbControlOut (vi, bmRequestType, bRequest, wValue,wIndex, wLength, buffer)

viUsbControlOut (vi, bmRequestType, bRequest, wValue, wIndex, wLength,
buffer)

Usage
Send arbitrary data to a USB device on the default control port.

C format
ViUInt16 viUsbControlOut (ViSession vi, ViInt16 bmRequestType, ViInt16 bRequest,
ViUInt16 wValue, ViUInt16 wIndex, ViUInt16 wLength, ViConstBuf buffer);

Visual basic format
viUsbControlOut (ByVal vi As Long, ByVal bmRequestType As Integer, ByVal bRequest
As Integer, ByVal wValue As Integer, ByVal wIndex As Integer, ByVal wLength As
Integer, buffer As Byte) As Long

Parameters
Table 146: viUsbContrlIn() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
bmRequest-Type IN The bmRequestType parameter of the setup stage of a USB control transfer. Refer to the

USB specification for further details.
bRequest IN The bRequest parameter of the setup stage of a USB control transfer.
wValue IN The wValue parameter of the setup stage of a USB control transfer.
Table continued…

Operations

TekVISA Programmer Manual 91

Name Direction Description
wIndex IN The wIndex parameter of the setup stage of a USB control transfer. This is usually the

index of the interface or endpoint.
wLength IN The wLength parameter of the setup stage of a USB control transfer. This value also

specifies the size of the data buffer to receive the data from the optional data stage of the
control transfer.

buffer IN The data buffer that receives the data from the optional data stage of the control transfer.
This is ignored if wLength is 0.

Return values
Table 147: viUsbContrlOut() completion codes

Completion codes Description
VI_SUCCESS Operation completed successfully.

Table 148: viUsbContrlOut() error codes

Error codes Description
VI_ERROR_INV_OBJECT The given session reference is invalid.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been

locked for this kind of access.
VI_ERROR_TMO Timeout expired before the operation completed.
VI_ERROR_INV_SETUP Unable to start the write operation because the setup is invalid (due to attributes being set to

an inconsistent state).
VI_ERROR_IO An unknown I/O error occurred during transfer.
VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.
VI_ERROR_INV_PARAMETER The value of some parameter, which parameter is unknown, is invalid.
VI_ERROR_INV_MASK The bmRequestType parameter contains an invalid mask.

C example

/ UsbControlOut.cpp : Defines the entry point for the console application.
//
#include “stdafx.h”
#include <stdio.h>
#include <memory.h>
#include <visa.h>
#define USB_DIR_OUT 0x00
#define USB_TYPE_STANDARD 0x00 << 5
#define USB_RECIP_ENDPOINT 0x02
#define USB_REQ_CLEAR_FEATURE 0x01
int _tmain(int argc, _TCHAR* argv[])
{
ViSession rm = VI_NULL, vi = VI_NULL;
ViStatus status;
ViChar buffer[256];
ViUInt32 retCnt = 0;

Operations

92

ViInt16 bmRequestType = USB_DIR_OUT | USB_TYPE_STANDARD
| USB_RECIP_ENDPOINT;
ViInt16 bRequest = USB_REQ_CLEAR_FEATURE;
ViUInt16 wValue = 0x00;
ViUInt16 wIndex = 0x06;
ViUInt16 wLength = 0x00;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Open a VISA session to the USB device
status = viOpen(rm, ”USB0::1689::1025::Q10033::0::INSTR”, VI_NULL,
VI_NULL, &vi);
//Note: “USB0::1689::1025::Q10033::0::INSTR” is a VISA descriptor for
specific USBTMC instrument.
// Please change this to a valid VISA descriptor name for your USBTMC
instrument.
if (status < VI_SUCCESS) goto error;
// Sending CLEAR_FEATURE
status = viUsbControlOut (vi, bmRequestType, USB_REQ_CLEAR_FEATURE,
wValue, wIndex, wLength, NULL);
if (status < VI_SUCCESS) goto error;
// Clean up
viClose(vi); // Not needed, but makes things a bit more understandable
viClose(rm);
return 0;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n”, buffer);
if (rm != VI_NULL) {
viClose(rm);
}
return 0;
}

Comments
This operation can be used to send arbitrary data to a USB device on the default control port.

See also
viUsbControlIn (vi, bmRequestType, bRequest, wValue,wIndex, wLength, buffer, retCount)

viVPrintf (vi, writeFmt, params)

Usage
Formats and writes data to a device using a pointer to a variable-length argument list.

C format
ViStatus viVPrintf (ViSession vi, ViConstString writeFmt, ViVAList params)

Operations

TekVISA Programmer Manual 93

Visual basic format
viVPrintf (ByVal vi As Long, ByVal writeFmt As String, ByVal params As Any) As Long

Parameters
Table 149: viVPrintf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
writeFmt IN The format string to apply to parameters in ViVAList
params IN A pointer to a variable argument list containing the variable number of parameters on which

the format string is applied. The formatted data is written to the specified device.

Return values
Table 150: viVPrintf() completion codes

Completion codes Description
VI_SUCCESS Parameters are successfully formatted.

Table 151: viVPrintf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform write operation because of I/O error.
VI_ERROR_TMO Timeout expired before write operation completed.
VI_ERROR_INV_FMT A format specifier in thewriteFmt string is not valid.
VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system resources.

C example

#include <stdio.h>
#include <string.h>
#include <visa.h>
#include <stdarg.h>
// My printf which always prepends the command with a header off
ViStatus MyPrintf(ViSession vi, ViString fmt, ...)
{
ViStatus retval;
ViVAList args;
viBufWrite(vi, (ViBuf) ”header off“, 10, VI_NULL);
va_start(args, fmt);
retval = viVPrintf(vi, fmt, args);

Operations

94

va_end(args);
return retval;
}
int main(int argc, char* argv[])
{
ViSession rm = VI_NULL, vi = VI_NULL;
ViStatus status;
char buffer[256];
long const start = 1;
long const stop = 500;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Open the gpib device at primary address 1, gpib board 8
status = viOpen(rm, ”GPIB0::1::INSTR“, VI_NULL, VI_NULL,
&vi);
if (status < VI_SUCCESS) goto error;
status = MyPrintf(vi, ”data:start %d;data:stop %d“, start,
stop);
if (status < VI_SUCCESS) goto error;
viClose(vi); // Not needed, but makes things a bit more
// understandable
viClose(rm);
return 0;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, ”failure: %s\n“, buffer);
if (rm != VI_NULL) {
viClose(rm);
}
return 1;
}

Comments
This operation is similar to viPrintf() except that params provides a pointer to a variable argument list rather than the variable argument list
itself (with separate arg parameters).

See also
Reading and Writing Formatted Data

viVScanf (vi, readFmt, params)

viVQueryf(vi, writeFmt, readFmt, params)

viVQueryf (vi, writeFmt, readFmt, params)

Usage
Writes and reads formatted data to and from a device using a pointer to a variable-length argument list.

Operations

TekVISA Programmer Manual 95

C format
ViStatus viVQueryf (ViSession vi, ViConstString writeFmt, ViConstString
readFmt,ViVAList params)

Visual basic format
viVQueryf (ByVal vi As Long, ByVal writeFmt As String, ByVal readFmt As String,
ByVal params As Any) As Long

Parameters
Table 152: viVQueryf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
writeFmt IN The format string to apply to write parameters in ViVAList
readFmt IN The format string to apply to read parameters in ViVAList
params IN OUT A pointer to a variable argument list containing the variable number of write and read

parameters. The write parameters are formatted and written to the specified device. The
read parameters store the data read from the device after the format string is applied to the
data.

Return values
Table 153: viVQueryf() completion codes

Completion codes Description
VI_SUCCESS Successfully completed the Query operation.

Table 154: viVQueryf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform write operation because of I/O error.
VI_ERROR_TMO Timeout expired before read/write operation completed.
VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is not valid.
VI_ERROR_NSUP_FMT A format specifier in the writeFmt or readFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system resources.

C example

#include <stdio.h>
#include <visa.h>
#include <stdarg.h>

Operations

96

// My own Queryf that flushes the write buffer before doing a query.
ViStatus MyQueryf(ViSession vi, ViConstString writeFmt, ViConstString readFmt, ...)
{
ViStatus retval;
ViVAList args;
// Make sure pending writes are written
retval = viFlush(vi, VI_WRITE_BUF | VI_READ_BUF);
if (retval < VI_SUCCESS) return retval;
// Pass Query on to VISA
va_start(args, readFmt);
retval = viVQueryf(vi, writeFmt, readFmt, args);
va_end(args);
return retval;
}

Comments
This operation is similar to viQueryf() except that params provides a pointer to a variable argument list rather than the variable argument
list itself (with separate arg parameters).

Note: Because the prototype for this function cannot provide complete type-checking, remember that all output parameters must
be passed by reference.

See also
Reading and Writing Formatted Data

viVScanf (vi, readFmt, params)

viVPrintf(vi, writeFmt, params)

viVScanf (vi, readFmt, params)

Usage
Reads and formats data from a device using a pointer to a variable-length argument list.

C format
ViStatus viVScanf (ViSession vi, ViConstString readFmt,ViVAList params)

Visual basic format
viVScanf (ByVal vi As Long, ByVal readFmt As String, ByVal params As Any) As Long

Parameters
Table 155: viVScanf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
readFmt IN The format string to apply to read parameters in ViVAList
params OUT A pointer to a variable argument list containing the variable number of parameters into

which the data is read and the format string is applied.

Operations

TekVISA Programmer Manual 97

Return values
Table 156: viVScanf() completion codes

Completion Codes Description
VI_SUCCESS Data is successfully read and formatted into arg parameters.

Table 157: viVScanf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_IO Could not perform write operation because of I/O error.
VI_ERROR_TMO Timeout expired before read operation completed.
VI_ERROR_INV_FMT A format specifier in thereadFmt string is not valid.
VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system

resources.

C example

#include <stdio.h>
#include <visa.h>
#include <stdarg.h>
// My own Scan that flushes the write buffer before doing a query.
ViStatus MyScanf(ViSession vi, ViString readFmt, ...)
{
ViStatus retval;
ViVAList args;
// Make sure pending writes are written
retval = viFlush(vi, VI_WRITE_BUF);
if (retval < VI_SUCCESS) return retval;
// Pass Query on to VISA
va_start(args, readFmt);
retval = viVScanf(vi, readFmt, args);
va_end(args);
return retval;
}

Comments
This operation is similar to viScanf() except that params provides a pointer to a variable argument list rather than the variable argument list
itself (with separate arg parameters).

Note: Because the prototype for this function cannot provide complete type-checking, remember that all output parameters must
be passed by reference.

Operations

98

See also
Reading and Writing Formatted Data

viVQueryf (vi, writeFmt, readFmt, params)

viVPrintf(vi, writeFmt, params)

viVSPrintf (vi, buf, writeFmt, params)

Usage
Formats and writes data to a user-specified buffer using a pointer to a variable-length argument list.

C format
ViStatus viVSPrintf (ViSession vi, ViPBuf buf, ViConstString writeFmt, ViVAList
params)

Visual basic format
viVSPrintf (ByVal vi As Long, ByVal buf As String, ByVal writeFmt As String, ByVal
params As Any) As Long

Parameters
Table 158: viVSPrintf() Parameters

Name Direction Description
vi IN Unique logical identifier to a session.
buf OUT Buffer where data is to be written.
writeFmt IN The format string to apply to parameters in ViVAList.
params IN A pointer to a variable argument list containing the variable number of parameters on which

the format string is applied. The formatted data is written to the specified buffer.

Return values
Table 159: viVSPrintf() completion codes

Completion codes Description
VI_SUCCESS Parameters are successfully formatted.

Table 160: viVSPrintf() error codes

Error codes Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

Table continued…

Operations

TekVISA Programmer Manual 99

Error codes Description
VI_ERROR_INV_FMT A format specifier in the writeFmt string is not valid.
VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system resources.

C example

#include <stdio.h>
#include <string.h>
#include <visa.h>
#include <stdarg.h>
// My printf writes directly to the device (no buffering)
ViStatus MyPrintf(ViSession vi, ViConstString fmt, ...)
{
ViStatus retval;
ViVAList args;
ViChar buffer[256];
va_start(args, fmt);
retval = viVSPrintf(vi, (ViBuf) buffer, fmt, args);
va_end(args);
if (retval >= VI_SUCCESS) {
retval = viWrite(vi, (ViBuf) buffer, strlen(buffer),
VI_NULL);
}
return retval;
}

Comments
This operation is similar to viVPrintf() except that the output is not written to the device; it is written to the user-specified buffer. This output
buffer is NULL terminated.

If this operation outputs an END indicator before all the arguments are satisfied, the rest of the writeFmt string is ignored and the buffer
string is still terminated by a NULL.

See also
Reading and Writing Formatted Data

viVSScanf (vi, buf, readFmt, params)

viVSScanf (vi, buf, readFmt, params)

Usage
Reads and formats data from a user specified buffer using a pointer to a variable length argument list.

C format
ViStatus viVSScanf (ViSession vi, ViConstBuf buf, ViConstString readFmt, ViVAList
params)

Operations

100

Visual basic format
viVSScanf (ByVal vi As Long, ByVal buf As String, ByVal readFmt As String, ByVal
params As Any) As Long

Parameters
Table 161: viVSScanf() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
buf IN Buffer from which data is read and formatted.
readFmt IN The format string to apply to parameters in ViVAList.
params OUT A pointer to a variable argument list with the variable number of parameters into which the

data is read and to which the format string is applied.

Return values
Table 162: viVSScanf() completion codes

Completion codes Description
VI_SUCCESS Data is successfully read and formatted into arg parametes.

Table 163: viVSScanf() error codes

Error codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is not valid.
VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system resources.

C example

#include <stdio.h>
#include <string.h>
#include <visa.h>
#include <stdarg.h>
// My scanf reads directly from the device (no buffering).
// The unscanned portions of the buffer will be lost.
ViStatus MyScanf(ViSession vi, ViConstString fmt, ...)
{
ViStatus retval;
ViVAList args;
ViChar buffer[1024];
retval = viRead(vi, (ViBuf) buffer, sizeof(buffer), VI_NULL);

Operations

TekVISA Programmer Manual 101

if (retval >= VI_SUCCESS)
{
va_start(args, fmt);
retval = viVSScanf(vi, (ViBuf) buffer, fmt, args);
va_end(args);
return retval;
}

Comments
The viVSScanf() operation is similar to viVScanf() except that the data is read from a user-specified buffer rather than a device.

Note: Because the prototype for this function cannot provide complete type checking, remember that all output parameters must
be passed by reference.

See also
Reading and writing formatted data

viVSPrintf (vi, buf, writeFmt, params)

viWaitOnEvent (vi, inEventType, timeout, outEventType, outContext)

Usage
Waits for an occurrence of the specified event for a given session.

C format
ViStatus viWaitOnEvent(ViSession vi, ViEventType inEventType, ViUInt32
timeout,ViPEventType outEventType,ViPEvent outContext)

Visual basic format
viWaitOnEvent (ByVal viAs Long, ByVal inEventTypeAs Long, ByVal timeoutAs Long,
ByVal outEventType As Long, ByVal outcontext As Long) As Long

Parameters
Table 164: viWaitOnEvent() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
inEventType IN Logical identifier of the events to wait for.
timeout IN Absolute time period in time units that the resource shall wait for a specified event to

occur before returning the time elapsed error. The time unit is in milliseconds.
outEventType OUT Logical identifier of the event actually received.
outContext OUT A handle specifying the unique occurrence of an event.

Operations

102

Return values
Table 165: viWaitOnEvent() completion codes

Completion codes Description
VI_SUCCESS Wait terminated successfully on receipt of an event occurrence. The queue is empty.
VI_SUCCESS_QUEUE_ NEMPTY Wait terminated successfully on receipt of an event notification. There is still at least one more

event occurrence of the type specified by inEventType available for this session.

Table 166: viWaitOnEvent() error codes

Error codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_TMO Specified event did not occur within the specified time period.
VI_ERROR_NENABLED The session must be enabled for events of the specified type in order to receive them.

C example

viWrite(vi, (ViBuf) ”*CLS“, 4, VI_NULL);

viWrite(vi, (ViBuf) ”:ACQUIRE:STATE 1“, 16, VI_NULL);

viwrite(vi, (ViBuf) ”*OPC“, 4, VI_NULL);

viWaitOnEvent(vi,VI_EVENT_SERVICE_REQ, 5000, &eventType, &context)

viReadSTB(vi, &stb)

Comments
The viWaitOnEvent() operation suspends the execution of a thread of an application and waits for an event of the type specified by
inEventTypefor a time period specified by timeout.

• You can only wait for events that have been enabled with the viEnableEvent() operation. Refer to individual event descriptions for
context definitions.

• viWaitOnEvent() removes the specified event from the event queue if one that matches the type is available. The process of dequeuing
makes an additional space available in the queue for events of the same type.

• When the outContext handle returned from a successful invocation of viWaitOnEvent() is no longer needed, it should be passed to
viClose().

• If a session’s event queue becomes full and a new event arrives, the new event is discarded.
• The default value of VI_ATTR_MAX_QUEUE_LENGTH is 50.

Table 167: Special values for inEventType parameter with viWaitOnEvents()

Value Description
VI_ALL_ENABLED_EVENTS The operation waits for any event that is enabled for the given session.

Operations

TekVISA Programmer Manual 103

Table 168: Special values for timeout Parameter with viWaitOnEvents()

Value Description
VI_TMO_INFINITE The operation is suspended indefinitely.
VI_TMO_IMMEDIATE The operation is not suspended; therefore, this value can be used to dequeue the events from an

event queue.

The outEventTypeand outContext parameters are optional and can be VI_NULL.

Table 169: Special values for outEventType parameter with viWaitOnEvents()

Value Description
VI_NULL Used if the event type is known from the inEventType parameter.

Table 170: Special values for outContext parameter with viWaitOnEvents()

Value Description
VI_NULL Used if the outContext handle is not needed to retrieve additional information. If that case, VISA will

automatically close the event context.

See also
Handling Events

viDiscardEvents(vi,event, mechanism)

viWrite(vi, buf, count, retCount)

Usage
Writes data synchronously to a device from the specified buffer.

C format
ViStatus viWrite (ViSession vi, ViConstBuf buf, ViUInt32 count, ViPUInt32 retCount)

Visual basic format
viWrite (ByVal vi As Long, ByVal buf As String, ByVal count As Long, ByVal retCount
As Long) As Long

Parameters
Table 171: viWrite() parameters

Name Direction Description
vi IN Unique logical identifier to a session.
buf IN Represents the location of a data block to be sent to device.
count IN Number of bytes to be written.
Table continued…

Operations

104

Name Direction Description
retCount OUT Represents the location of an integer that will be set to the number of bytes actually

transferred.

Return values
Table 172: viWrite() completion codes

Completion codes Description
VI_SUCCESS Transfer completed.

Table 173: viWrite() error codes

Error codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been

locked for this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_RAW_WR_PROT_VIOL Violation of the raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_PROT_VIOL Violation of the raw read protocol occurred during transfer.
VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_INV_SETUP Unable to start write operation because setup is not valid (due to attributes being set to an

inconsistent state).
VI_ERROR_NCIC The interface associated with the given vi is not currently the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC are deasserted).
VI_ERROR_IO An unknown I/O error occurred during transfer.

C example

if (viWrite(vi, (ViBuf) “*idn?”, 5, VI_NULL) < VI_SUCCESS) return;
if (viRead(vi, (ViBuf) buffer, sizeof(buffer)--1, &retCnt)
< VI_SUCCESS) return;
buffer[retCnt] = ’\0’; // ensure the string is null terminated
printf(”id: %s\n“, buffer);

Comments
The viWrite() operation synchronously transfers data. The data to be written is in the buffer represented by buf.

• \u0002 This operation returns only when the transfer terminates.
• \u0002 Only one synchronous write operation can occur at any one time.

Operations

TekVISA Programmer Manual 105

Table 174: Special value for retCount parameter with viWrite()

Value Description
VI_NULL Do not return the number of bytes transferred. This may be useful if it is only important to know

whether the operation succeeded or failed.

See also
Reading and writing formatted data

viRead (vi, buf, count, retCount)

viWriteAsync (vi, buf, count, jobId)
Usage
Writes data asynchronously to a device from the specified buffer.

C format
ViStatus viWriteAsync (ViSession vi, ViConstBuf buf, ViUInt32 count, ViPJobId
retCount)

Visual basic format
Not Applicable

Parameters
Table 175: viWriteAsync() parameters

Name Direction Description
vi IN Uniquelogical identifier to a session.
buf IN Represents the location of a data block to be sent to device.
count IN Number of bytes to be written.
jobId OUT Represents the location of a variable that will be set to the job identifier of this

asynchronous write operation.

Return values
Table 176: viWriteAsync() completion codes

Completion codes Description
VI_SUCCESS Asynchronous write operation successfully queued.
VI_SUCCESS_SYNC Write operation performed synchronously.

Operations

106

Table 177: viWriteAsync() error codes

Error codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue write operation.

C example

// rwwait.cpp
//
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include ”visa.h“
// viReadAsync/viWriteAsync example --
// These commands can potentially decrease test time by allowing
// several read or write commands to happen in parallel.
int main(int argc, char* argv[])
{
ViSession rm, vi[2];
ViJobId jobid[2];
ViStatus status;
char string[2][256];
ViEventType eventType[2];
ViEvent event[2];
int i;
// clear strings
for (i = 0; i < 2; i++) {
memset(string[i], 0, 256);
}
// Open the default RM
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Open multiple devices
status = viOpen(rm, ”GPIB0::1::INSTR“, NULL, NULL, &vi[0]);
if (status < VI_SUCCESS) goto error;
status = viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi[1]);
if (status < VI_SUCCESS) goto error;
// Enable waiting on the events
for (i = 0; i < 2; i++) {
status = viEnableEvent(vi[i], VI_EVENT_IO_COMPLETION,
VI_QUEUE, VI_NULL);
if (status < VI_SUCCESS) goto error;
}
// Write commands to several devices (this allows
// several writes to be done in parallel)
for (i = 0; i < 2; i++) {
status = viWriteAsync(vi[i], (ViBuf) “*idn?”,
5, &jobid[i]);

Operations

TekVISA Programmer Manual 107

if (status < VI_SUCCESS) goto error;
}
// Wait for completion on all of the devices
for (i = 0; i < 2; i++) {
viWaitOnEvent(vi[i], VI_EVENT_IO_COMPLETION,
INFINITE, &eventType[i], &event[i]);
}
// Queue the read for all the devices (this allows
// several reads to be done im parallel)
for (i = 0; i < 2; i++) {
status = viReadAsync(vi[i], (ViBuf) string[i], 256,
&jobid[i]);
if (status < VI_SUCCESS) goto error;
}
// Wait for all the reads to complete
for (i = 0; i < 2; i++) {
viWaitOnEvent(vi[i], VI_EVENT_IO_COMPLETION,
INFINITE, &eventType[i], &event[i]);
}
// Write out the *idn? strings.
for (i = 0; i < 2; i++) {
printf(”%d: %s\n“, i, string[i]);
}
// Cleanup and exit
for (i = 0; i < 2; i++) {
status = viDisableEvent(vi[i], VI_EVENT_IO_COMPLETION,
VI_QUEUE);
if (status < VI_SUCCESS) goto error;
}
viClose(rm);
return 0;
error:
viStatusDesc(rm, status, string[0]);
fprintf(stderr, ”Error: %s\n“, (ViBuf) string[0]);
return 0;
}

Comments
The viWriteAsync() operation asynchronously transfers data. The data to be written is in the buffer represented by buf.

• This operation normally returns before the transfer terminates.
• Before calling this operation, you should enable the session for receiving I/O completion events. After the transfer has completed, an

I/O completion event is posted.
• The operation returns a job identifier that you can use with either viTerminate() to abort the operation or with an I/O completion event to

identify which asynchronous write operation completed.
• Since an asynchronous I/O request could complete before the vWriteAsync() operation returns, and the I/O completion event can be

distinguished based on the job identifier, an application must be made aware of the job identifier before the first moment that the
I/O completion event could possibly occur. Setting the output parameter jobId before the data transfer even begins ensures that an
application can always match the jobId parameter with the VI_ATTR_JOB_ID attribute of the I/O completion event.

• If multiple jobs are queued at the same time on the same session, an application can use the jobId to distinguish the jobs, as they are
unique within a session.

Operations

108

• The viWriteAsync() operation MAY be implemented synchronously, which could be done by using the viWrite() operation. This means
that an application can use the asynchronous operations transparently even if a low level driver only supports synchronous data
transfers. If the viWriteAsync() operation is implemented synchronously and a given invocation of the operation is valid, the operation
returns VI_SUCCESS_SYNC AND all status information is returned in a VI_EVENT_IO_COMPLETION.

• The status code VI_ERROR_RSRC_LOCKED can be returned either immediately or from the VI_EVENT_IO_COMPLETION event.
• For each successful call to viWriteAsync(), there is one and only one VI_EVENT_IO_COMPLETION event occurrence.

Table 178: Special value for jobId parameter with viWriteAsync()

Value Description
VI_NULL Do not return a job identifier. This option may be useful if only one asynchronous operation

will be pending at a given time.

See also
Asychronous Read/Write

viReadAsync(vi,buf, count, jobId)

ViTerminate (vi, degree, jobId)

viWriteFromFile (vi, fileName, count, retCount)
Usage
Take data from a file and write it to a device synchronously.

C format
ViStatus viWriteFromFile(ViSession vi, ViString fileName, ViUInt32 count, ViUInt32
retCount)

Visual basic format
viWriteFromFile(By Val vi As Long, By Val fileName As String, By Val count As Long,
By Val retCount As Long) As Long

Parameters
Table 179: viWriteFromFile parameters

Name Direction Description
vi IN Unique logical identifier to a session.
fileName IN Name of the file from which data will be read.
count IN Number of bytes to be written.
retCount OUT Number of bytes actually transferred.

Operations

TekVISA Programmer Manual 109

Return values
Table 180: viWriteFromFile completion codes

Completion codes Description
VI_SUCCESS Transfer completed.

Table 181: viWriteFromFile() error codes

Error codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is not valid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has

been locked for this kind of access.
VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_RAW_WR_PROT_VIOL Violation of the raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_PROT_VIOL Violation of the raw read protocol occurred during transfer.

Table 182: viWriteFromFile() error codes (cont.)

Error codes Description
VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_NCIC The interface associated with the given vi is not currently the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC are deasserted).
VI_ERROR_IO An unknown I/O error occurred during transfer.
VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file.

Possible reasons include a not valid path or lack of access rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.
VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

C example

ViSession rm, vi;
ViStatus status = VI_SUCCESS;
ViUInt32 retCount;
if (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, “GPIB8::1::INSTR”, NULL, NULL, &vi) < VI_SUCCESS)
return;
status = viWriteFromFile(vi,“curve.bin”,20,&retCount);
viClose(vi);
viClose(rm);

Operations

110

Comments
This write operation synchronously transfers data. The file specified in fileName is opened in binary read-only mode, and the data (up to
the end-of-file, or the number of bytes specified in count) is read. The data is then written to the device. This operation returns only when
the transfer terminates.

This operation is useful for sending data that was already processed or formatted.

See also
Reading and writing formatted data

viWrite (vi, buf, count, retCount)

viReadToFile (vi, fileName, count, retCount)

viPxiReserveTriggers(vi, cnt, trigBuses, trigLines, failureIndex)
Usage
Reserves multiple trigger lines that the caller can then map and/or assert.

Parameters
Table 183: viPxiReserveTriggers() parameters

Name Direction Type Description
vi IN ViSession Unique logical identifer to a session.
cnt IN ViInt16 Number of trigger bus/line pairs to follow.
trigBuses IN ViAInt16 Array of trigger buses. The size of this array is specified in cnt.
trigLines IN ViAInt16 Array of trigger lines. The size of this array is specified in cnt.
failure Index OUT ViInt16 Specifies the 0-based index of the firsr trigger bus/line pair that could not

be reserved, if this function returns error code directly related to reserving
triggers. On success, this output parameter contains the value -1. For any
other status code returned, the value of this output parameter is undefined
and should not be used.

Return values
Type vistatus: This is the operational return status. It return either a completion code or an error code as follows.

Table 184: viPxiReserveTriggers() completion codes

Completion code Description
VI_SUCCESS Operation completed successfully.

Table 185: viPxiReserveTriggers() error codes

Error codes Description
VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the same value).

Table continued…

Operations

TekVISA Programmer Manual 111

Error codes Description
VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource identified by vi has

been locked by this kind of access.
VI_ERROR_INV_LENGTH Invalid count specified.
VI_ERROR_IO Could not perform operation because of I/O error.
VI_ERROR_LINE_IN_USE One of the specified lines is currently in use.
VI_ERROR_INV_LINE One of the specified lines is invalid.
VI_ERROR_NSUP_LINE One of the specified lines is not supported by this VISA implementation.

Operations

112

Attributes summary
The table summarizes TekVISA attributes by category. Within categories, attributes appear in alphabetical order.

Table 186: Table of VISA attributes by category

Attribute Description
Resource attributes
VI_ATTR_MAX_QUEUE_LENGTH Specifies themaximumnumber of events that can be queued at any time on the given

session.
VI_ATTR_RM_SESSION Specifies the session of the Resource Manager that was used to open this session.
VI_ATTR_RSRC_IMPL_VERSION Resource version that uniquely identifies each of the different revisions or implementations of

a resource.

VI_ATTR_RSRC_LOCK_STATE The current locking state of the resource on the given session.
VI_ATTR_RSRC_MANF_ID A value that corresponds to the VXI manufacturer ID of the manufacturer that created the

VISA implementation.

VI_ATTR_RSRC_MANF_NAME A string that corresponds to the VXImanufacturer name of the manufacturer that created the
VISA implementation.

VI_ATTR_RSRC_NAME The unique identifier for a resource.
VI_ATTR_RSRC_SPEC_VERSION Resource version that uniquely identifies the version of the VISA specification to which the

implementation is compliant.
VI_ATTR_USER_DATA Data used privately by the application for a particular session.
Interface attributes
VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.
VI_ATTR_INTF_NUM Board number for the given interface.
VI_ATTR_INTF_TYPE Specifies the interface type of the givensession.
VI_ATTR_IO_PROT Specifies which protocol to use, depending on the type of interface.
Serial device attributes
VI_ATTR_ASRL_AVAIL_NUM Shows the number of bytes available in the global receive buffer.
VI_ATTR_ASRL_BAUD The baud rate of the interface.
VI_ATTR_ASRL_CTS_STATE Shows the current state of the Clear-to-Send (CTS) input signal.
VI_ATTR_ASRL_DATA_BITS The number of data bits contained in eachframe (5 to 8).
VI_ATTR_ASRL_DCD_STATE Shows the current state of the Data Carrier Detect (DCD) input signal.
VI_ATTR_ASRL_DSR_STATE Shows the current state of the Data Set Ready (DSR) input signal.
VI_ATTR_ASRL_DTR_STATE Used to manually assert or unassert theData Terminal Ready (DTR) output signal.
VI_ATTR_ASRL_END_IN Indicates the method used to terminate readoperations.
VI_ATTR_ASRL_END_OUT Indicates the method used to terminate write operations.
VI_ATTR_ASRL_FLOW_CNTRL Indicates the type of flow control used by the transfer mechanism.
VI_ATTR_ASRL_PARITY The parity used with every frame transmittedand received.
VI_ATTR_ASRL_REPLACE_CHAR Specifies the character to be used to replace incoming characters that arrive with errors

(such as parity error).
Table continued…

Attributes summary

TekVISA Programmer Manual 113

Attribute Description
VI_ATTR_ASRL_RI_STATE Shows the current state of the Ring Indicator (RI) input signal.
VI_ATTR_ASRL_RTS_STATE Used to manually assert or unassert the Request To Send (RTS) output signal.
VI_ATTR_ASRL_STOP_BITS The number of stop bits used to indicate theend of a frame.
VI_ATTR_ASRL_XOFF_CHAR Specifies the value of the XOFF character used for XON/XOFF flow control (both directions).
VI_ATTR_ASRL_XON_CHAR Specifies the value of the XON character used for XON/XOFF flow control (both directions).
GPIB device attributes
VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB device used by the given session.
VI_ATTR_GPIB_READDR_EN Specifies whether to use repeat addressing before each read or write operation.
VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPIB device used by the given session.
VI_ATTR_GPIB_UNADDR_EN Specifies whether to unaddress the device (UNT and UNL) after each read or write

operation.
Read/Write attributes
VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer.
VI_ATTR_SEND_END_EN Specifies whether to assert END during the transfer of the last byte of the buffer.
VI_ATTR_SUPPRESS_END_EN Specifies whether to suppress the END indicator termination.
VI_ATTR_TERMCHAR Termination character.
VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should terminate when a termination

character is received.
VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer.
Event attributes
VI_ATTR_BUFFER Contains the address of a buffer that was used in an asynchronous operation.
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.
VI_ATTR_JOB_ID Contains the job ID of the asynchronous operation that has completed.
VI_ATTR_OPER_NAME The name of the operation generating the event.
VI_ATTR_RET_COUNT Contains the actual number of elements that were asynchronously transferred.
VI_ATTR_STATUS Contains the return code of the asynchronous I/O operation that has completed or status

code returned by an operation generating an error.
Miscellaneous attributes
VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds.
VI_ATTR_TRIG_ID Identifier for the current triggering mechanism.
USBTMC device attributes
VI_ATTR_USB_INTFC_NUM Specifies the USB interface number of the device to which the session is connected.
VI_ATTR_USB_MAX_INTR_SIZE Specifies the maximum number of bytes that the USB device will send on the interrupt-IN

pipe.
VI_ATTR_USB_PROTOCOL Specifies the USB protocol number.
VI_ATTR_USB_RECV_INTR_DATA Specifies the actual data that was received from the USB interrupt-IN pipe.
VI_ATTR_USB_RECV_INTR_SIZE Specifies the size of the data that was received from the USB interrupt-IN pipe.
VI_ATTR_USB_SERIAL_NUM Shows the serial number of the USB instrument. Used only for display purposes.
Table continued…

Attributes summary

114

Attribute Description
TCPIP specific INSTR/SOCKET resource attributes
VI_ATTR_TCPIP_ADDR Specifies the TCPIP address of the device to which the session is connected.
VI_ATTR_TCPIP_HOSTNAME Specifies the host name of the device.
VI_ATTR_TCPIP_KEEPALIVE An application can request a TCP/IP provider to enable the use of keep-alive packets on

TCP connections.
VI_ATTR_TCPIP_NODELAY Disables the Nagle algorithm when the attribute is enabled.
VI_ATTR_TCPIP_PORT Specifies the port number for a given TCPIP address.

Attributes summary

TekVISA Programmer Manual 115

Attributes
The following TekVISA attributes are presented in alphabetical order.

VI_ATTR_ASRL_AVAIL_NUM
Usage
Shows the number of bytes available in the global receive buffer.

Table 187: VI_ATTR_ASRL_AVAIL_NUM Attribute

Data Type Range of Values Default Access Privilege
ViUInt32 0 to FFFFFFFFh 0 Read Only Global

Comments
Applicable to serial devices.

See also
Controlling the Serial I/O Buffers

Setting and Retrieving Attributes

VI_ATTR_ASRL_BAUD
Usage
The baud rate of the interface.

Table 188: VI_ATTR_ASRL_BAUD Attribute

Data Type Range of Values Default Access Privilege
ViUInt32 0 to FFFFFFFFh 9600 Read/Write Global

Comments
Applicable to serial devices. Although represented as an unsigned 32-bit integer so that any baud rate can be used, it usually requires a
commonly used rate such as 300, 1200, 2400, or 9600 baud.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_CTS_STATE
Usage
Shows the current state of the Clear-to-Send (CTS) input signal.

Attributes

116

Table 189: VI_ATTR_ASRL_CTS_STATE Attribute

Data Type Range of Values Default Access Privilege
ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

N/A Read Only Global

Comments
Applicable to serial devices.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_FLOW_CNTRL

VI_ATTR_ASRL_RTS_STATE

VI_ATTR_ASRL_DATA_BITS
Usage
The number of data bits contained in each frame (5 to 8).

Table 190: VI_ATTR_ASRL_DATA_BITS Attribute

Data Type Range of Values Default Access Privilege
ViUint16 5 to 8 8 Read/Write Global

Comments
Applicable to serial devices. The data bits for each frame are located in the low-order bits of every byte stored in memory.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_DCD_STATE
Usage
Shows the current state of the Data Carrier Detect (DCD) input signal.

Table 191: VI_ATTR_ASRL_DCD_STATE Attribute

Data Type Range of Values Default Access Privilege
ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

N/A Read Only Global

Attributes

TekVISA Programmer Manual 117

Comments
Applicable to serial devices. The DCD signal is often used by modems to indicate the detection of a carrier (remote modem) on the
telephone line. The DCD signal is also known as Receive Line Signal Detect (RLSD).

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_DSR_STATE
Usage
Shows the current state of the Data Set Ready (DSR) input signal.

Table 192: VI_ATTR_ASRL_DSR_STATE Attribute

Data Type Range of Values Default Access Privilege
ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

N/A Read Only Global

Comments
Applicable to serial devices.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_FLOW_CNTRL

VI_ATTR_ASRL_DTR_STATE

VI_ATTR_ASRL_DTR_STATE
Usage
Used to manually assert or unassert the Data Terminal Ready (DTR) output signal.

Table 193: VI_ATTR_ASRL_DTR_STATE Attribute

Data Type Range of Values Default Access Privilege
ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

N/A Read/Write Global

Comments
Applicable to serial devices.

Attributes

118

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_FLOW_CNTRL

VI_ATTR_ASRL_DSR_STATE

VI_ATTR_ASRL_END_IN
Usage
Indicates the method used to terminate read operations.

Table 194: VI_ATTR_ASRL_END_IN Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_ASRL_END_NONE

VI_ASRL_END_LAST_BIT

VI_ASRL_END_TERMCHAR

VI_ASRL_END_TERMCHAR Read/Write Local

Comments
Applicable to serial devices.

• If set to VI_ASRL_END_NONE, the read will not terminate until all of the requested data is received (or an error occurs).
• If set to VI_ASRL_END_LAST_BIT, the read will terminate as soon as a character arrives with its last bit set. For example, if

VI_ATTR_ASRL_DATA_BITS is set to 8, the read will terminate when acharacter arrives with the 8th bit set.
• If set to VI_ASRL_END_TERMCHAR, the read will terminate as soon as the character in VI_ATTR_TERMCHAR is received.

See also
Setting and Retrieving Attributes

VI_ATTR_TERMCHAR

VI_ATTR_ASRL_END_OUT
Usage
Indicates the method used to terminate write operations.

Table 195: VI_ATTR_ASRL_END_OUT Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_ASRL_END_NONE

VI_ASRL_END_LAST_BIT

VI_ASRL_END_TERMCHAR

VI_ASRL_END_BREAK

VI_ASRL_END_NONE Read/Write Local

Attributes

TekVISA Programmer Manual 119

Comments
Applicable to serial devices.

• If set to VI_ASRL_END_NONE, the write will not append anything to the data being written.
• If set to VI_ASRL_END_BREAK, the write will transmit a break after all the characters for the write have been sent.
• If set to VI_ASRL_END_LAST_BIT, the write will send all but the last character with the last bit clear, then transmit the last character

with the last bit set. For example, if VI_ATTR_ASRL_DATA_BITS is set to 8, the write will clear the 8th bit for all but the last character,
then transmit the last character with the 8th bit set.

• If set to VI_ASRL_END_TERMCHAR, the write will send the character in VI_ATTR_TERMCHAR after the data being transmitted.

See also
Setting and Retrieving Attributes

VI_ATTR_TERMCHAR

VI_ATTR_ASRL_FLOW_CNTRL
Usage
Indicates the type of flow control used by the transfer mechanism.

Table 196: VI_ATTR_ASRL_FLOW_CNTRL Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_ASRL_FLOW_NONE

VI_ASRL_FLOW_XON_XOFF

VI_ASRL_FLOW_RTS_CTS

VI_ASRL_FLOW_DTR_DSR

VI_ASRL_FLOW_NONE Read/Write Global

Comments
Applicable to serial devices.

• If set to VI_ASRL_FLOW_NONE, the transfer mechanism does not use flow control, and buffers on both sides of the connection are
assumed to be large enough to hold all data transferred.

• If set to VI_ASRL_FLOW_XON_XOFF, the transfer mechanism uses the XON and XOFF characters to perform flow control.

• It controls input flow by sending XOFF when the receive buffer is nearly full.
• It controls the output flow by suspending transmission when XOFF is received.

• If set to VI_ASRL_FLOW_RTS_CTS, the transfer mechanism uses the RTSoutput signal and the CTS input signal to perform flow
control.

• It controls input flow by unasserting the RTS signal when the receive buffer is nearly full.
• It controls output flow by suspending the transmission when the CTS signal is unasserted.
• In this case, the VI_ATTR_ASRL_RTS_STATE attribute is ignored when changed, but can be read to determine whether the

background flow control is asserting or unasserting the signal.
• If set to VI_ASRL_FLOW_DTR_DSR, the transfer mechanism uses the DTR output signal and the DSR input signal to perform flow

control.

Attributes

120

• It controls input flow by unasserting the DTR signal when the receive buffer is nearly full, and it controls output flow by suspending
the transmission when the DSR signal is unasserted.

• This attribute can specify multiple flow control mechanisms by bit-ORing multiple values together. However, certain combinations may
not be supported by all serial ports and/or operating systems.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_PARITY
Usage
The parity used with every frame transmitted and received.

Table 197: VI_ATTR_ASRL_PARITY Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_ASRL_PAR_NONE

VI_ASRL_PAR_ODD

VI_ASRL_PAR_EVEN

VI_ASRL_PAR_MARK

VI_ASRL_PAR_SPACE

VI_ASRL_PAR_NONE Read/Write Local

Comments
Applicable to serial devices.

• VI_ASRL_PAR_MARK means that the parity bit exists and is always 1.
• VI_ASRL_PAR_SPACE means that the parity bit exists and is always 0.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_REPLACE_CHAR
Usage
Specifies the character to be used to replace incoming characters that arrive with errors (such as parity error).

Table 198: VI_ATTR_ASRL_REPLACE_CHAR Attribute

Data Type Range of Values Default Access Privilege
ViUInt8 0 to FFh 0 Read/Write Local

Comments
Applicable to serial devices.

Attributes

TekVISA Programmer Manual 121

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_RI_STATE
Usage
Shows the current state of the Ring Indicator (RI) input signal.

Table 199: VI_ATTR_ASRL_RI_STATE Attribute

Data Type Range of Values Default Access Privilege
ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

N/A Read Only Global

Comments
Applicable to serial devices. The RI signal is often used by modems to indicate that the telephone line is ringing.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_RTS_STATE
Usage
Used to manually assert or unassert the Request To Send (RTS) output signal.

Table 200:

Data Type Range of Values Default Access Privilege
ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

N/A Read/Write Global

Comments
Applicable to serial devices.

When the VI_ATTR_ASRL_FLOW_CNTRL attribute is set to VI_ASRL_FLOW_RTS_CTS, this attribute is ignored when changed, but can
be read to determine whether the background flow control is asserting or unasserting the signal.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_FLOW_CNTRL

Attributes

122

VI_ATTR_ASRL_CTS_STATE

VI_ATTR_ASRL_STOP_BITS
Usage
The number of stop bits used to indicate the end of a frame.

Table 201: VI_ATTR_ASRL_STOP_BITS Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_ASRL_STOP_ONE

VI_ASRL_STOP_ONE5

VI_ASRL_STOP_TWO

VI_ASRL_STOP_ONE Read/Write Global

Comments
Applicable to serial devices. The value VI_ASRL_STOP_ONE5 indicates one--and--one--half (1.5) stop bits.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_XOFF_CHAR
Usage
Specifies the value of the XOFF character used for XON/XOFF flow control (both directions).

Table 202: VI_ATTR_ASRL_XOFF_CHAR Attribute

Data Type Range of Values Default Access Privilege
ViUInt8 0 to FFh <Ctrl-S> (13h) Read/Write Local

Comments
Applicable to serial devices. If XON/XOFF flow control (software handshaking) is not being used, the value of this attribute is ignored.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_FLOW_CNTRL

VI_ATTR_ASRL_XON_CHAR

Attributes

TekVISA Programmer Manual 123

VI_ATTR_ASRL_XON_CHAR
Usage
Specifies the value of the XON character used for XON/XOFF flow control (both directions).

Table 203: VI_ATTR_ ASRL_XON_CHAR Attribute

Data Type Range of Values Default Access Privilege
ViUInt8 0 to FFh <Ctrl-Q> (11h) Read/Write Local

Comments
Applicable to serial devices. If XON/XOFF flow control (software handshaking) is not being used, the value of this attribute is ignored.

See also
Setting and Retrieving Attributes

VI_ATTR_ASRL_FLOW_CNTRL

VI_ATTR_ASRL_XOFF_CHAR

VI_ATTR_BUFFER
Usage
Contains the address of a buffer that was used in an asynchronous operation.

Table 204: VI_ATTR_BUFFER Attribute

Data Type Range of Values Default Access Privilege
ViBuf N/A N/A Read Only

Comments
This attribute is used to check the buffer after event I/O completion.

See also
Setting and Retrieving Attributes

Events

VI_EVENT_IO_COMPLETION

VI_ATTR_EVENT_TYPE
Usage
Unique logical identifier of the event.

Attributes

124

Table 205: VI_ATTR_EVENT_TYPE Attribute

Data Type Range of Values Default Access Privilege
ViEventType 0 to FFFFFFFFh N/A Read Only

Comments
This attribute is used to identify one of the event types listed in the section on Events.

See also
Setting and Retrieving Attributes

Events

VI_ATTR_GPIB_PRIMARY_ADDR
Usage
Primary address of the GPIB device used by the given session.

Table 206: VI_ATTR_GPIB_PRIMARY_ADDR Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 0 to 30 N/A Read Only Global

Comments
Applicable to GPIB devices. See the viOpen() operation for more information about the format for addressing GPIB devices.

See also
Setting and Retrieving Attributes

VI_ATTR_RSRC_NAME

viOpen()

VI_ATTR_GPIB_READDR_EN
Usage
Specifies whether to use repeat addressing before each read or write operation.

Table 207: VI_ATTR_GPIB_READDR_EN Attribute

Data Type Range of Values Default Access Privilege
Boolean VI_TRUE

VI_FALSE

VI_TRUE Read/Write Local

Attributes

TekVISA Programmer Manual 125

Comments
Applicable to GPIB devices.

See also
Setting and Retrieving Attributes

VI_ATTR_GPIB_UNADDR_EN

VI_ATTR_GPIB_SECONDARY_ADDR
Usage
Secondary address of the GPIB device used by the given session.

Table 208: VI_ATTR_GPIB_SECONDARY_ADDR Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 0 to 30

VI_NO_SEC_ADDR

VI_NO_SEC_ADDR Read Only Global

Comments
Applicable to GPIB devices. See the viOpen() operation for more information about the format for addressing GPIB devices.

See also
Setting and Retrieving Attributes

VI_ATTR_RSRC_NAME

viOpen()

VI_ATTR_GPIB_UNADDR_EN
Usage
Specifies whether to unaddress the device (UNT and UNL) after each read or write operation.

Table 209: VI_ATTR_GPIB_UNADDR_EN Attribute

Data Type Range of Values Default Access Privilege
ViBoolean VI_TRUE

VI_FALSE

VI_FALSE Read/Write Local

Comments
Applicable to GPIB devices.

Attributes

126

See also
Setting and Retrieving Attributes

VI_ATTR_GPIB_READDR_EN

VI_ATTR_INTF_INST_NAME
Usage
Specifies whether to unaddress the device (UNT and UNL) after each read or write operation.

Table 210: VI_ATTR_INTF_INST_NAME Attribute

Data Type Range of Values Default Access Privilege
ViString N/A N/A Read Only Global

Comments
Applicable to GPIB and serial interfaces.

See also
Setting and Retrieving Attributes

VI_ATTR_INTF_NUM

VI_ATTR_INTF_NUM
Usage
Board number for the given interface.

Table 211: VI_ATTR_INTF_NUM Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 0 to FFFFh 0 Read Only Global

Comments
Applicable to GPIB and serial interfaces.

See also
Setting and Retrieving Attributes

VI_ATTR_INTF_INST_NAME

Attributes

TekVISA Programmer Manual 127

VI_ATTR_INTF_TYPE
Usage
Specifies the interface type of the given session.

Table 212: VI_ATTR_INTF_TYPE Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_INTF_GPIB

VI_INTF_ASRL

N/A Read Only Global

Comments
Applicable to GPIB and serial interfaces.

See also
Setting and Retrieving Attributes

VI_ATTR_IO_PROT
Usage
Specifies which protocol to use, depending on the type of interface.

Table 213: VI_ATTR_IO_PROT Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_NORMAL

VI_HS488

VI_ASRL488

VI_NORMAL Read/Write Local

Comments
Choices depend of interface type:

• With GPIB interfaces, you can choose between normal and high-speed (HS488) data transfers.
• With serial interfaces, you can choose between normal and ASRL488-style transfers, in which case the viAssertTrigger(), viReadSTB(),

and viClear() operations send 488.2-defined strings.

See also
Setting and Retrieving Attributes

Controlling the Serial I/O Buffers

viAssertTrigger()

viReadSTB()

viClear()

Attributes

128

VI_ATTR_JOB_ID
Usage
Contains the job ID of the asynchronous operation that has completed.

Table 214: VI_ATTR_Job_ID Attribute

Data Type Range of Values Default Access Privilege
ViJobID N/A N/A Read Only

Comments
This attribute is used to check the job ID after event I/O completion

See also
Setting and Retrieving Attributes

Events

VI_EVENT_IO_COMPLETION

VI_ATTR_MAX_QUEUE_LENGTH
Usage
Specifies the maximum number of events that can be queued at any time on the given session.

Table 215: VI_ATTR_MAX_QUEUE_LENGTH Attribute

Data Type Range of Values Default Access Privilege
ViUInt32 1h to FFFFFFFFh 50 Read/Write Local

Comments
If the number of pending occurrences exceeds the value specified in this attribute, the lowest-priority events are discarded. This attribute is

• Read/Write until viEnableEvent() is called for the first time on a session
• Read Only after viEnableEvent() is called for the first time on a session

See also
Setting and Retrieving Attributes

viEnableEvent()

VI_ATTR_OPER_NAME
Usage
The name of the operation generating the event.

Attributes

TekVISA Programmer Manual 129

Table 216: VI_ATTR_OPER_NAME Attribute

Data Type Range of Values Default Access Privilege
ViString N/A N/A Read Only

Comments
This attribute is used to check the operation name that generated an event, typically an exception. For example, for an exception
generated from the viLock() operation, VI_ATTR_OPER_NAME would contain the string “viLock”.

See also
Setting and Retrieving Attributes

Events

VI_EVENT_EXCEPTION

VI_ATTR_RD_BUF_OPER_MODE
Usage
Determines the operational mode of the read buffer.

Table 217: VI_ATTR_RD_BUF_OPER_MODE Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_DISABLE

VI_FLUSH_DISABLE Read/Write Local

Comments
When the operational mode is set to

• VI_FLUSH_DISABLE (default), the buffer is flushed only on explicit calls to viFlush().
• VI_FLUSH_ON_ACCESS, the buffer is flushed every time a viScanf() operation completes.

See also
Setting and Retrieving Attributes

viScanf()

VI_ATTR_RET_COUNT
Usage
Contains the actual number of elements that were asynchronously transferred.

Table 218: VI_ATTR_RET_COUNT Attribute

Data Type Range of Values Default Access Privilege
ViUInt32 0 to FFFFFFFFh N/A Read Only

Attributes

130

Comments
This attribute is used to check the return count after event I/O completion.

See also
Setting and Retrieving Attributes

VI_EVENT_IO_COMPLETION

VI_ATTR_RM_SESSION
Usage
Specifies the session of the Resource Manager that was used to open this session.

Table 219: VI_ATTR_RM_SESSION Attribute

Data Type Range of Values Default Access Privilege
ViSession N/A N/A Read Only Local

Comments
Specifies the session of the Resource Manager that was used to open this session.

See also
Setting and Retrieving Attributes

VI_ATTR_RSRC_IMPL_VERSION
Usage
Resource version that uniquely identifies each of the different revisions or implementations of a resource.

Table 220: VI_ATTR_RSRC_IMPL_VERSION Attribute

Data Type Range of Values Default Access Privilege
ViVersion 0 to FFFFFFFFh N/A Read Only Global

Comments
The value of this attribute is defined by the individual manufacturer and increments the total version value on subsequent revisions. The
value of sub-minor versions is non-zero only for pre-release versions (beta). All officially released products have a sub-minor value of zero.

Table 221: ViVersion Description for VI_ATTR_RSRC_IMPL_VERSION

Bits 31 to 20 Bits 19 to 8 Bits 0 to 7
Major Number Minor Number Sub-minor Number

Attributes

TekVISA Programmer Manual 131

See also
Setting and Retrieving Attributes

VI_ATTR_RSRC_LOCK_STATE
Usage
The current locking state of the resource on the given session.

Table 222: VI_ATTR_RSRC_LOCK_STATE Attribute

Data Type Range of Values Default Access Privilege
ViAccessMode VI_NO_LOCK

VI_EXCLUSIVE_LOCK

VI_SHARED_LOCK

VI_NO_LOCK Read Only Global

Comments
The resource can be unlocked, locked with an exclusive lock, or locked with a shared lock.

See also
Setting and Retrieving Attributes

Locking and Unlocking Resources

VI_ATTR_RSRC_MANF_ID
Usage
A value that corresponds to the VXI manufacturer ID of the manufacturer that created the VISA implementation.

Table 223: VI_ATTR_RSRC_MANF_ID Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 0 to 3FFFh N/A Read Only Global

Comments
The manufacturer of TekVISA is Tektronix.

See also
Setting and Retrieving Attributes

Attributes

132

VI_ATTR_RSRC_MANF_NAME
Usage
A string that corresponds to the VXI manufacturer name of the manufacturer that created the VISA implementation.

Table 224: VI_ATTR_RSRC_MANF_NAME Attribute

Data Type Range of Values Default Access Privilege
ViString N/A N/A Read Only Global

Comments
The manufacturer of TekVISA is Tektronix.

See also
Setting and Retrieving Attributes

VI_ATTR_RSRC_NAME
Usage
The unique identifier for a resource.

Table 225: VI_ATTR_RSRC_NAME Attribute

Data Type Range of Values Default Access Privilege
ViRsrc N/A N/A Read Only Global

Comments
For the Default Resource Manager, the value of this attribute is “”, the empty string.

• The value of this attribute must be compliant with the address structure presented in the following table. See the viOpen() description
for examples.

• Optional string segments are shown in square brackets ([]).
• The default value for the optional string segment board is 0.
• The default value for the optional string segment secondary address is none.
• Address strings are not case sensitive.

Table 226: Resource Address String Grammar

Interface Syntax
ASRL ASRL[board][::INSTR]
GPIB GPIB[board]:: primary address[:: secondary address][::INSTR]

See also
Setting and Retrieving Attributes

viOpen()

Attributes

TekVISA Programmer Manual 133

VI_ATTR_RSRC_SPEC_VERSION
Usage
Resource version that uniquely identifies the version of the VISA specification to which the implementation is compliant.

Table 227: VI_ATTR_RSRC_SPEC_VERSION Attribute

Data Type Range of Values Default Access Privilege
ViVersion 0 to FFFFFFFFh 00200000h Read Only Global

Comments
This current implementation is compliant with Version 2.0 of the VISA Specification.

Table 228: ViVersion Description for VI_ATTR_RSRC_SPEC_VERSION

Bits 31 to 20 Bits 19 to 8 Bits 0 to 7
Major Number Minor Number Sub-minor Number

See also
Setting and Retrieving Attributes

VI_ATTR_SEND_END_EN
Usage
Specifies whether to assert END during the transfer of the last byte of the buffer.

Table 229: VI_ATTR_SEND_END_EN Attribute

Data Type Range of Values Default Access Privilege
Vi Boolean VI_TRUE

VI_FALSE

VI_TRUE Read/Write Local

Comments
Applicable to GPIB and serial devices.

See also
Setting and Retrieving Attributes

Basic Input/Output

Reading and Writing Formatted Data

Attributes

134

VI_ATTR_STATUS
Usage
Contains the return code of the asynchronous I/O operation that has completed or status code returned by an operation generating an
error.

Table 230: VI_ATTR_STATUS Attribute

Data Type Range of Values Default Access Privilege
ViStatus N/A N/A Read Only

Comments
This attribute is used to check the return code after event I/O completion or the status code after an exception event.

See also
Setting and Retrieving Attributes

Handling Events

VI_EVENT_IO_COMPLETION

VI_EVENT_EXCEPTION

VI_ATTR_SUPPRESS_END_EN
Usage
Specifies whether to suppress the END indicator termination.

Table 231: VI_ATTR_SUPPRESS_END_EN Attribute

Data Type Range of Values Default Access Privilege
ViBoolean VI_TRUE

VI_FALSE

VI_FALSE Read/Write Local

Comments
If this attribute is set to

• VI_TRUE, the END indicator does not terminate read operations.
• VI_FALSE, the END indicator terminates read operations.

See also
Setting and Retrieving Attributes

viRead()

Attributes

TekVISA Programmer Manual 135

VI_ATTR_TCPIP_ADDR
Usage
Specifies the TCPIP address of the device to which the session is connected. This string is formatted in dot notation.

Table 232: VI_ATTR_TCPIP_ADDR Attribute

Data Type Range of Values Default Access Privilege
ViString N/A N/A Read Only Global

Comments
This attribute is applicable to TCPIP INSTR and TCPIP SOCKET.

See also
Setting and Retrieving Attributes

VI_ATTR_TCPIP_HOSTNAME

VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB
Usage
This is the maximum HiSLIP message size VISA will accept from a HiSLIP system in units of kilobytes (1024 bytes). Defaults to 1024 (a 1
MB maximum message size).

VI_ATTR_TCPIP_HISLIP_OVERLAP_EN
Usage
This enables HiSLIP ‘Overlap’ mode and its value defaults to the mode suggested by the instrument on HiSLIP connection.

• If disabled, the connection uses ‘Synchronous’ mode to detect and recover from interrupted errors.
• If enabled, the connection uses ‘Overlapped’ mode to allow overlapped responses. If changed, VISA will do a Device Clear operation

to change the mode.

Table 233: VI_ATTR_TCPIP_HISLIP_OVERLAP_EN Attribute

VI_ATTR_TCPIP_HISLIP_OVERLAP
_EN

R/W Local ViBoolean VI_TRUE, VI_FALSE

VI_ATTR_TCPIP_HISLIP_VERSION
Usage
This is the HiSLIP protocol version used for a particular HiSLIP connection. Currently, HiSLIP version 1.0 would return a ViVersion value of
0x00100000.

Attributes

136

Table 234: VI_ATTR_TCPIP_HISLIP_VERSION Attribute

Symbolic Name Range Default
VI_ATTR_TCPIP_HISLIP_VERSION 0h to FFFFFFFFh N/A

VI_ATTR_TCPIP_HOSTNAME
Usage
Specifies the host name of the device. If no host name is available, this attribute returns an empty string.

Table 235: VI_ATTR_TCPIP_HOSTNAME Attribute

Data Type Range of Values Default Access Privilege
ViString N/A N/A Read Only Global

Comments
This attribute is applicable to TCPIP INSTR and TCPIP SOCKET.

See also
Setting and Retrieving Attributes

VI_ATTR_TCPIP_ADDR

VI_ATTR_TCPIP_IS_HISLIP
Usage
Specifies whether this resource uses the HiSLIP protocol.

Table 236: VI_ATTR_TCPIP_IS_HISLIP Attribute

VI_ATTR_TCPIP_IS_HISLIP RO Global ViBoolean VI_TRUE, VI_FALSE

VI_ATTR_TCPIP_KEEPALIVE
Usage
An application can request a TCP/IP provider to enable the use of keep-alive packets on TCP connections by turning on this attribute. If a
connection is dropped as a result of keep-alives, the error code VI_ERROR_CONN_LOST is returned to current and subsequent I/O calls
on the session.

Table 237: VI_ATTR_TCPIP_KEEPALIVE Attribute

Data Type Range of Values Default Access Privilege
ViBoolean VI_TRUE

VI_FALSE

VI_FALSE Read/Write Local

Attributes

TekVISA Programmer Manual 137

Comments
This attribute is applicable to TCPIP SOCKET only.

See also
Setting and Retrieving Attributes

VI_ATTR_TCPIP_NODELAY

VI_ATTR_TCPIP_NODELAY
Usage
Disables the Nagle algorithm when this attribute is enabled. The Nagle algorithm improves network performance by buffering send data
until a full-size packet can be sent. This attribute is enabled by default in VISA to verify that synchronous writes get flushed immediately.

Table 238: VI_ATTR_TCPIP_NODELAY Attribute

Data Type Range of Values Default Access Privilege
ViBoolean VI_TRUE

VI_FALSE

VI_FALSE Read/Write Local

Comments
This attribute is applicable to TCPIP SOCKET only.

See also
Setting and Retrieving Attributes

VI_ATTR_TCPIP_KEEPALIVE

VI_ATTR_TCPIP_PORT
Usage
Specifies the port number for a given TCPIP address. For a TCPIP SOCKET resource, this is a required part of the address string.

Table 239: VI_ATTR_TCPIP_PORT Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 0 to FFFFh N/A Read Only Global

Comments
This attribute is applicable to TCPIP SOCKET only.

See also
Setting and Retrieving Attributes

Attributes

138

VI_ATTR_TERMCHAR
Usage
Termination character.

Table 240: VI_ATTR_TERMCHAR Attribute

Data Type Range of Values Default Access Privilege
ViUInt8 0 to FFh 0Ah (linefeed) Read/Write Local

Comments
When the termination character is read and VI_ATTR_TERMCHAR_EN is enabled during a read operation, the read operation terminates.

See also
Setting and Retrieving Attributes

Basic Input/Output

Reading and Writing Formatted Data

VI_ATTR_TERMCHAR_EN

VI_ATTR_ASRL_END_IN

VI_ATTR_ASRL_END_OUT

viRead()

VI_ATTR_TERMCHAR_EN
Usage
Flag that determines whether the read operation should terminate when a termination character is received.

Table 241: VI_ATTR_TERMCHAR_EN Attribute

Data Type Range of Values Default Access Privilege
ViBoolean VI_TRUE

VI_FALSE

VI_FALSE Read/Write Local

Comments
When the termination character is read and VI_ATTR_TERMCHAR_EN is enabled during a read operation, the read operation terminates.

See also
Setting and Retrieving Attributes

Basic Input/Output

Reading and Writing Formatted Data

VI_ATTR_TERMCHAR

Attributes

TekVISA Programmer Manual 139

viRead()

VI_ATTR_TMO_VALUE
Usage
Minimum timeout value to use, in milliseconds.

Table 242: VI_ATTR_TMO_VALUE Attribute

Data Type Range of Values Default Access Privilege
ViUInt32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh

VI_TMO_INFINITE

2000 Read/Write Local

Comments
A timeout value of

• VI_TMO_IMMEDIATE means that operations should never wait for the device to respond.
• VI_TMO_INFINITE disables the timeout mechanism.

See also
Setting and Retrieving Attributes

VI_ATTR_TRIG_ID
Usage
Identifier for the current triggering mechanism.

Table 243: VI_ATTR_TRIG_ID Attribute

Data Type Range of Values Default Access Privilege
ViInt16 VI_TRIG_SW VI_TRIG_SW Read/Write Local

Comments
Applicable to GPIB and serial devices.

See also
Setting and Retrieving Attributes

viAssertTrigger()

Attributes

140

VI_ATTR_TCPIP_IS_HISLIP
Usage
Specifies whether this resource uses the HiSLIP protocol.

Table 244: VI_ATTR_TCPIP_IS_HISLIP Attribute

VI_ATTR_TCPIP_IS_HISLIP RO Global ViBoolean VI_TRUE, VI_FALSE

VI_ATTR_USB_INTFC_NUM
Usage
Specifies the USB interface number of the device to which the session is connected.

Table 245: VI_ATTR_USB_INTFC_NUM Attribute

Data Type Range of Values Default Access Privilege
viInt16 0 to FEh 0 Read Only Global

Comments
Applicable only to USB INSTR devices.

See also
Setting and Retrieving Attributes

VI_ATTR_USB_MAX_INTR_SIZE
Usage
Specifies the maximum number of bytes that the USB device will send on the interrupt-IN pipe.

Table 246: VI_ATTR_USB_MAX_INTR_SIZE Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 0 to FFFFh N/A Read/Write Local

Comments
Applicable only to USB INSTR devices.

If a USB interrupt contains more data than this size, the data in excess of this size will be lost.

VI_ATTR_USB_MAX_INTR_SIZE is Read/Write when the corresponding session is not enabled to receive USB interrupt events. When the
session is enabled to receive USB interrupt events, the attribute VI_ATTR_USB_MAX_INTR_SIZE is Read Only

See also
Setting and Retrieving Attributes

Attributes

TekVISA Programmer Manual 141

VI_ATTR_USB_PROTOCOL
Usage
Specifies the USB protocol number.

Table 247: VI_ATTR_USB_PROTOCOL Attribute

Data Type Range of Values Default Access Privilege
ViInt16 0 to FFh N/A Read Only Global

Comments
Applicable only to USB INSTR devices.

See also
Setting and Retrieving Attributes

VI_ATTR_USB_RECV_INTR_DATA
Usage
Specifies the actual data that was received from the USB interrupt-IN pipe.

Table 248: VI_ATTR_USB_RECV_INTR_DATA Attribute

Data Type Range of Values Default Access Privilege
ViAUInt8 N/A N/A Read Only

Comments
Applicable only to USB INSTR devices. Contains the actual received data from the USB Interrupt. The size of the data buffer passed in
must be at least equal to the value of VI_ATTR_USB_RECV_INTR_SIZE.

See also
Setting and Retrieving Attributes

VI_ATTR_USB_RECV_INTR_SIZE

VI_ATTR_USB_RECV_INTR_SIZE
Usage
Specifies the size of the data that was received from the USB interrupt-IN pipe.

Table 249: VI_ATTR_USB_RECV_INTR_SIZE Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 0 to FFFFh N/A Read/Write Local

Attributes

142

Comments
Applicable only to USB INSTR devices. Contains the number of bytes of USB interrupt data that is stored.

See also
Setting and Retrieving Attributes

VI_ATTR_USB_RECV_INTR_DATA

VI_ATTR_USB_SERIAL_NUM
Usage
This string attribute is the serial number of the USB instrument. The value of this attribute should be used only for display purposes and not
for programmatic decisions.

Table 250: VI_ATTR_USB_SERIAL_NUM Attribute

Data Type Range of Values Default Access Privilege
viString N/A N/A Read Only Global

Comments
Applicable only to USB INSTR devices.

See also
Setting and Retrieving Attributes

VI_ATTR_USER_DATA
Usage
Data used privately by the application for a particular session.

Table 251: VI_ATTR_USER_DATA Attribute

Data Type Range of Values Default Access Privilege
ViAddr N/A N/A Read/Write Local

Comments
This data is not used by VISA for any purpose and is provided to the application for its own use.

See also
Setting and Retrieving Attributes

Attributes

TekVISA Programmer Manual 143

VI_ATTR_WR_BUF_OPER_MODE
Usage
Determines the operational mode of the write buffer.

Table 252: VI_ATTR_WR_BUF_OPER_MODE Attribute

Data Type Range of Values Default Access Privilege
ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_WHEN_FULL

VI_FLUSH_WHEN_FULL Read/Write Local

Comments
When the operational mode is set to

• VI_FLUSH_WHEN_FULL (default), the buffer is flushed when an END indicator is written to the buffer, or when the buffer fills up.
• VI_FLUSH_ON_ACCESS, the write buffer is flushed under the same conditions, and also every time a viPrintf() operation completes.

See also
Setting and Retrieving Attributes

Basic Input/Output

Reading and Writing Formatted Data

viPrintf()

Attributes

144

Events
The following event types are presented in alphabetical order.

VI_EVENT_EXCEPTION
Usage
Notification that an error condition has occurred during an operation invocation.

Table 253: VI_EVENT_EXCEPTION related attributes

Event attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Value = VI_EVENT_EXCEPTION.

VI_ATTR_STATUS Status code returned by the operation generating the error.
VI_ATTR_OPER_NAME The name of the operation generating the event.

See also
Exception Handling

Generating an Error Condition

VI_EVENT_IO_COMPLETION
Usage
Notification that an asynchronous operation has completed.

Table 254: VI_EVENT_IO_COMPLETION related attributes

Event attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Value = VI_EVENT_IO_COMPLETION.

VI_ATTR_STATUS Return code of the asynchronous I/O operation that has completed.
VI_ATTR_JOB_ID The job ID of the asynchronous operation that has completed.
VI_ATTR_BUFFER The address of a buffer that was used in an asynchronous operation.
VI_ATTR_RET_COUNT The actual number of elements that were asynchronously transferred.
VI_ATTR_OPER_NAME The name of the operation generating the event.

See also
Asynchronous Read/Write

viReadAsync()

Events

TekVISA Programmer Manual 145

viWriteAsync

VI_EVENT_SERVICE_REQ
Usage
Notification that a service request was received from the device.

Table 255: VI_EVENT_SERVICE_REQ related attributes

Event attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Value = VI_EVENT_SERVICE_REQ.

See also
Status/Service Request

Events

146

Programming examples
Introduction
The programming examples discussed here illustrate methods you can use to control the oscilloscope using VISA. All the program
examples assume that the device descriptor is GPIB8::1::INSTR. The sample programs include:

SIMPLE.CPP — illustrates opening and closing a session

SIMPLEFINDRSRC.CPP — illustrates finding resources using regular expressions

FINDRSRCATTRMATCH.CPP — illustrates finding resources using attribute matching

ATTRACCESS.CPP — illustrates getting and setting attributes

RWEXAM.CPP — illustrates basic input/output

FORMATIO.CPP — illustrates formatted input/output

BUFFERIO.CPP — demonstrates the performance effect of resizing the formatted I/O buffers

SRQWAIT.CPP — illustrates event handling using the queuing mechanism

SRQ.CPP — illustrates event handling using the callback mechanism

EXLOCKEXAM.CPP — illustrates exclusive locking of resources

SHAREDLOCK.CPP — illustrates shared locking of resources

The sample programs were written in Microsoft Visual C ++ 6.0. If you wish to develop code, you will need to compile and link using two
Visual C++ files: visa32.lib and visa.h. If you have TekVISA (or any version of VISA) installed on your computer, these files can be found in
the C:\vxipnp\winnt directory.

• The visa32.lib file is located in the \lib\Msc subdirectory of the C:\vxipnp\winnt directory.
• The visa.h file is located in the \include subdirectory of the C:\vxipnp\winnt directory.

For more information about TekVISA installation and packaging, refer to the Getting Started chapter of this book, and the README.PDF
file that accompanies the TekVISA installation software on the Product Software CD for your Tektronix instruments.

Compiling and linking examples
Notice: Some project examples in this chapter have already been configured and compiled on the accompanying CD.

To make an executable for any of the files (for example, a project named SIMPLE), perform the following steps:

1. Install TekVISA if necessary.
2. Install Visual C++ if necessary.
3. If necessary, copy the programming example files to your hard disk.
4. Set up a project for each example. The example below creates a new project for the SAMPLE example program.

a. Invoke Visual C++.
b. From the File menu, select New.
c. From the Projects tab, Choose Win32 Console Application.
d. Select the directory where you want to store the project, give the project a name, for example, Simple, and click OK.
e. Select An Empty Project, click Finish and OK.

Programming examples

TekVISA Programmer Manual 147

f. From the Project menu, select Add to Project > Files... , navigate to the folder where you stored the Simple.cpp source file,
select it, and click OK.

5. From the Project menu, select Settings.
6. Select All Configurations in the Settings for combo box.
7. From the C/C++ tab:

a. Choose the Precompiled Headers category and select Not using headers.
b. Choose the Preprocessor category and under the heading Additional Include directories, type

c:\vxipnp\win95\include (or c:\vxipnp\winNT\include if you are running under Windows NT)
8. From the Link tab:

a. Choose the General category and under the heading Object/library modules, add visa32.lib to the list of files in the text entry
box.

b. Choose the Input category and under the heading Additional library path, type c:\Program Files\IVI
Foundation\VISA\WinNT\lib\msc and click OK.

9. To compile and link your sample program, choose Build from the Build menu or press F7.
10. To run the sample program, choose Execute from the Build menu or press Ctrl+F7.

Opening and closing sessions
The VISA Resource Manager assigns unique resource addresses and IDs and provides access to resources registered with it. Currently,
one such manager is available by default to a VISA application after initialization—the Default Resource Manager. The Default Resource
Manager is used when finding available resources, opening resources, and performing other operations at the resource level.

• Applications use the viOpenDefaultRM() function to get access to the Default Resource Manager. This function must be called before
any VISA operations can be invoked.

• The first call to this function initializes the VISA system, including the Default Resource Manager resource, and returns a session to
that resource.

• Subsequent calls to this function return unique sessions to the same Default Resource Manager resource.
• After opening the Default Resource Manager, applications use the viOpen() operation to get access to a particular instrument

resource. This operation opens a session to a device resource that is uniquely identified by an address string. TekVISA supports the
following address string grammar syntax for GPIB and serial devices:

• GPIB[board]::primaryaddress[::secondaryaddress][::INSTR]
• ASRL[board][::INSTR]
• USB[board]::manufacturer ID::model code::serial number[::USB interface number]

[::INSTR]
where brackets [] enclose optional fields, the default board is 0, and the default secondary address is None. For example, GPIB8
refers to the GPIB INSTR device on board 0 at primary address 8.

• Once an application has opened a session to a VISA resource using some of the services in the VISA Resource Manager, it can use
viClose() to close that session and free up all the system resources associated with it. The VISA system is also responsible for freeing
up all associated system resources whenever an application becomes dysfunctional.

• IF the viClose() operation is invoked on a session returned from viOpenDefaultRM(), all VISA sessions opened with the
corresponding Default Resource Manager session are also closed.

Programming examples

148

SIMPLE.CPP example
The following C++ example, SIMPLE.CPP, opens the Default Resource Manager, opens a session to a GPIB device, queries the device,
and then closes the session to the GPIB device and closes the session to the Default Resource Manager. Note that the first Close()
operation is optional and not really necessary, since closing the Default Resource Manager also closes any sessions opened with it.

#include <visa.h>
#include <stdio.h>
#include <memory.h>
// This example opens a specific GPIB device, does an *idn query
// and prints the result.
int main(int argc, char* argv[])
{
 ViSession rm = VI_NULL, vi = VI_NULL;
 ViStatus status;
 ViChar buffer[256];
 ViUInt32 retCnt;
 // Open a default session
 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;
 // Open the GPIB device at primary address 1, GPIB board 8 status = viOpen(rm, “GPIB8::1::INSTR”,
VI_NULL, VI_NULL,&vi);
 if (status < VI_SUCCESS) goto error;
 // Send an ID query.
 status = viWrite(vi, (ViBuf) ”*idn?“, 5, &retCnt);
 if (status < VI_SUCCESS) goto error;
 // Clear the buffer and read the response
 memset(buffer, 0, sizeof(buffer));
 status = viRead(vi, (ViBuf) buffer, sizeof(buffer), &retCnt);
 if (status < VI_SUCCESS) goto error;
 // Print the response
 printf(”id: %s\n“, buffer);
 // Clean up
 viClose(vi); // Not needed, but makes things a bit more
 // understandable
 viClose(rm); // Closes resource manager and any sessions
 // opened with it
 return 0;
 error:
 // Report error and clean up
 viStatusDesc(vi, status, buffer);
 fprintf(stderr, ”failure: %s\n“, buffer);
 if (rm != VI_NULL) {
 viClose(rm);
 }
 return 1;
}

Finding resources
The VISA Resource Manager resource gives applications the ability to search a VISA system for a resource in order to establish a
communication link to it. Applications can request this service by using the viFindRsrc() and viFind-Next() operations.

Programming examples

TekVISA Programmer Manual 149

• The viFindRsrc() operation matches an expression against the resources available for a particular interface. The search is based on
a resource address string that uniquely identifies a given resource in the system. Search criteria can include a regular expression
matched against the address strings of available resources, and an optional attribute expression involving logical comparisons of
attribute values. If the match is successful, viFindRsrc() returns a handle to a find list as well as the first resource found in the list,
along with a count to indicate if more matching resources were found for the designated interface. The find list handle must be used as
an input to viFindNext().

• The viFindNext() operation receives the find list handle created by viFindRsrc() and returns the next device resource found in the list.
• When the find list handle is no longer needed, it should be passed to viClose(). The viClose() operation is used not only to close

sessions, but also to free find lists returned from the viFindRsrc() operation, as well as events returned from the viWaitOnEvent()
operation.

Using regular expressions
A regular expression is a string used for pattern matching against the resource address strings known to the VISA Resource Manager. The
expression can include regular characters as well as wildcard characters such as ?. Given a regular expression as input, the viFindRsrc()
operation compares it to a resource string or list of strings, and returns a list of one or more strings that match the regular expression.

SIMPLEFINDRSRC.CPP example
The following C++ example, SIMPLEFINDRSRC.CPP, opens the Default Resource Manager, finds all available GPIB devices, opens a
session to the first one, prints its response to an ID query, closes the session, finds the next one, and so on for all GPIB devices found. At
the end of the example, the program closes the session to the Default Resource Manager.

#include <visa.h>
#include <stdio.h>
#include <memory.h>
// This example cycles through all GPIB devices and prints out
// each instrument’s response to an *idn? query.
int main(int argc, char* argv[])
{
 ViSession rm = VI_NULL, vi = VI_NULL;
 ViStatus status;
 ViChar desc[256], id[256], buffer[256];
 ViUInt32 retCnt, itemCnt;
 ViFindList list;
 ViUInt32 i;
 // Open a default session
 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;
 // Find all GPIB devices
 status = viFindRsrc(rm, “GPIB?*INSTR”, &list, &itemCnt,desc);
 if (status < VI_SUCCESS) goto error;
 for (i = 0; i < itemCnt; i++) {
 // Open resource found in rsrc list
 status = viOpen(rm, desc, VI_NULL, VI_NULL, &vi);
 if (status < VI_SUCCESS) goto error;
 // Send an ID query.
 status = viWrite(vi, (ViBuf) ”*idn?“, 5, &retCnt);
 if (status < VI_SUCCESS) goto error;
 // Clear the buffer and read the response
 memset(id, 0, sizeof(id));
 status = viRead(vi, (ViBuf) id, sizeof(id), &retCnt);
 if (status < VI_SUCCESS) goto error;

Programming examples

150

 // Print the response
 printf(”id: %s: %s\n“, desc, id);
 // We’re done with this device so close it
 viClose(vi);
 // Get the next item
 viFindNext(list, desc);
 }
 // Clean up
 viClose(rm);
 return 0;
error:
 // Report error and clean up
 viStatusDesc(vi, status, buffer);
 fprintf(stderr, ”failure: %s\n“, buffer);
 if (rm != VI_NULL) {
 viClose(rm);
 }
 return 1;
}

Using attribute matching
If the resource string matches the regular expression, the attribute values of the resource are then matched against an optional attribute
expression if one exists. This expression can include the use of logical ANDs, ORs and NOTs. Equal (==) and unequal (!=) comparators
can be used to compare attributes of any type, and other inequality comparators (>, <, >=, <=) can be used to compare attributes of
numeric type. If the attribute type is ViString, a regular expression can be used in matching the attribute. Only global attributes can be used
in the attribute expression.

FINDRSRCATTRMATCH.CPP example
The following C++ example, FINDRSRCATTRMATCH.CPP, opens the Default Resource Manager, finds all GPIB devices with primary
addresses between 1 and 5, then cycles through the find list and, for each found device, opens a session, print its response to an ID query,
and closes the session. At the end of the example, the program closes the session to the Default Resource Manager.

#include <visa.h>
#include <stdio.h>
#include <memory.h>
// This example cycles through all GPIB devices with primary address
// between 1 and 5 and prints out each instrument’s response to an
// *idn? query.
int main(int argc, char* argv[])
{
 ViSession rm = VI_NULL, vi = VI_NULL;
 ViStatus status;
 ViChar desc[256], id[256], buffer[256];
 ViUInt32 retCnt, itemCnt;
 ViFindList list;
 ViUInt32 i;

 // Open a default session
 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;

Programming examples

TekVISA Programmer Manual 151

 // Find all GPIB devices
 status = viFindRsrc(rm, “GPIB?*INSTR\{VI_ATTR_GPIB_PRIMARY_ADDR >= 1\&&
VI_ATTR_GPIB_PRIMARY_ADDR <= 5}”,&list, &itemCnt, desc);
 if (status < VI_SUCCESS) goto error;

 for (i = 0; i < itemCnt; i++) {
 // Open resource found in rsrc list
 status = viOpen(rm, desc, VI_NULL, VI_NULL, &vi);
 if (status < VI_SUCCESS) goto error;

 // Send an ID query.
 status = viWrite(vi, (ViBuf) ”*idn?“, 5, &retCnt);
 if (status < VI_SUCCESS) goto error;

 // Clear the buffer and read the response
 memset(id, 0, sizeof(id));
 status = viRead(vi, (ViBuf) id, sizeof(id), &retCnt);
 if (status < VI_SUCCESS) goto error;

 // Print the response
 printf(”id: %s: %s\n“, desc, id);

 // We’re done with this device so close it
 viClose(vi);

 // Get the next item
 viFindNext(list, desc);
 }

 // Clean up
 viClose(rm);
 return 0;

error:

 // Report error and clean up
 viStatusDesc(vi, status, buffer);
 fprintf(stderr, ”failure: %s\n“, buffer);
 if (rm != VI_NULL) {
 viClose(rm);
 }
 return 1;
}

Setting and retrieving attributes
Resources have attributes associated with them. Some attributes depict the instantaneous state of the resource and some define
changeable parameters that can be used to modify the behavior of the resources. VISA defines operations for retrieving and modifying the
value of individual resource attributes.

Retrieving attributes

Programming examples

152

The VISA operation for retrieving the value of an attribute is viGetAttribute().

Setting attributes

The VISA operation for modifying the value of an attribute is viSetAttribute().

ATTRACCESS.CPP example
The following C++ example, ATTRACCESS.CPP, opens the Default Resource Manager, gets some information about the VISA
implementation, then opens a session to a particular GPIB device (the GPIB INSTR device on board 8 at primary address 1), sets
the timeout to 5 seconds, queries the device ID, and prints the results. At the end of the example, the program closes the sessions to the
device and to the Default Resource Manager.

In this example, the program uses the viGetAttribute() operation to retrieve VISA implementation information. Specifically, the program
consults the VI_ATTR_RSRC_MANF_NAME, VI_ATTR_RSRC_SPEC_VERSION, and VI_ATTR_RSRC_IMPL_VERSION attribute values
to obtain the VISA Manufacturer name, the VISA specification version it supports, and the VISA implementation version.

In this example, the program uses the viSetAttribute() operation to set the timeout to 5 seconds. Specifically, the program sets the
VI_ATTR_TMO_VALUE to 5000 milliseconds, which corresponds to 5 seconds.

#include <visa.h>
#include <stdio.h>
#include <memory.h>
// This example gets some info about the VISA implementation,
// opens a specific GPIB device, sets the timeout to 5 seconds, and
// does an *idn query then prints the result.
int main(int argc, char* argv[])
{
 ViSession rm = VI_NULL, vi = VI_NULL;
 ViStatus status;
 ViChar buffer[256];
 ViUInt32 retCnt;
 ViVersion version = 0, impl = 0;

 // Open a default session
 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;

 // Get and print VISA’s vendors name, VISA Specification
 // Version, and implementation version.
 status = viGetAttribute(rm, VI_ATTR_RSRC_MANF_NAME, buffer);
 if (status < VI_SUCCESS) goto error;
 status = viGetAttribute(rm, VI_ATTR_RSRC_SPEC_VERSION,&version);
 if (status < VI_SUCCESS) goto error;
 status = viGetAttribute(rm, VI_ATTR_RSRC_IMPL_VERSION,&impl);
 if (status < VI_SUCCESS) goto error;
 printf(”VISA Manufacturer Name: %s, supports %x spec,%x implementation version\n“, buffer, version, impl);

 // Open the GPIB device at primary address 1, GPIB board 8status = viOpen(rm, ”GPIB8::1::INSTR“, VI_NULL,
VI_NULL,&vi);

if (status < VI_SUCCESS) goto error;

 // Set timeout to 5 seconds
 status = viSetAttribute(vi, VI_ATTR_TMO_VALUE, 5000);

Programming examples

TekVISA Programmer Manual 153

 if (status < VI_SUCCESS) goto error;

 // Send an ID query.
 status = viWrite(vi, (ViBuf) ”*idn?“, 5, &retCnt);
 if (status < VI_SUCCESS) goto error;

 // Clear the buffer and read the response
 memset(buffer, 0, sizeof(buffer));
 status = viRead(vi, (ViBuf) buffer, sizeof(buffer), &retCnt);
 if (status < VI_SUCCESS) goto error;
 // Print the response
 printf(”id: %s\n“, buffer);

 // Clean up
 viClose(vi); // Not needed, but makes things a bit more
 // understandable
 viClose(rm);

 return 0;

error:
 // Report error and clean up
 viStatusDesc(vi, status, buffer);
 fprintf(stderr, ”failure: %s\n“, buffer);
 if (rm != VI_NULL) {
 viClose(rm);
 }
 return 1;
}

Basic Input/Output
The VISA INSTR resource provides a program with Basic Input/Output services to

• Send blocks of data to a device
• Request blocks of data from a device
• Send the device clear command to a device
• Trigger a device
• Find information about a device’s status

Reading and Writing Data
The Basic Input/Output Services allow devices associated with an INSTR resource to read and write data synchronously or
asynchronously. The resource can receive and send data in the native mode of the associated interface, or in any alternate mode
supported by the interface.

The VISA Write Service lets a program send blocks of data from an explicit user-specified buffer to the device. The device can interpret
the data as necessary—for example, as messages, commands, or binary encoded data. Setting the appropriate attribute modifies the data
transmittal method and other features such as whether to send an END indicator with each block of data.

The VISA Read Service lets a program request blocks of data from the device. The data is returned in an explicit, user--specified buffer.
How the returned data is interpreted depends on how the device has been programmed. For example, the information could be messages,

Programming examples

154

commands, or binary encoded data. Setting the appropriate attribute modifies the data transmittal method and other features such as the
termination character.

Synchronous Read/Write

The basic synchronous I/O operations are viRead() and viWrite().

Extract from SIMPLE.CPP Example
The following extract from the SIMPLE.CPP example highlights the synchronous read/write portions of that example. Here, the program
sends a 5--byte ID query (*idn?) to a GPIB device using a user--specified buffer, then clears the buffer for readability and reads the
device’s ID response from the same buffer.

// Send an ID query.
status = viWrite(vi, (ViBuf) “*idn?”, 5, &retCnt);
if (status < VI_SUCCESS) goto error;

// Clear the buffer and read the response
memset(buffer, 0, sizeof(buffer));
status = viRead(vi, (ViBuf) buffer, sizeof(buffer), &retCnt);
if (status < VI_SUCCESS) goto error;

// Print the response
printf(”id: %s\n“, buffer);

RWEXAM.CPP Example
In the following RWEXAM.CPP example, the program sends a 5-byte ID query (*idn?) to a GPIB device using a user-specified buffer, then
reads the device’s ID response from the same buffer. In this case, unlike the previous example the buffer is not cleared before it is read.

#include <stdio.h>
#include ”visa.h“

int main(int argc, char* argv[])
{
 ViSession rm, vi;
 ViStatus status;
 char string[256];
 ViUInt32 retCnt;

 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;

 status = viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi);
 if (status < VI_SUCCESS) goto error;

 status = viWrite(vi, (ViBuf) “*idn?”, 5, &retCnt);
 if (status < VI_SUCCESS) goto error;

 status = viRead(vi, (ViBuf) string, 256, &retCnt);

Programming examples

TekVISA Programmer Manual 155

 if (status < VI_SUCCESS) goto error;

 printf(”*idn response %s\n“, string);

 viClose(vi);
 viClose(rm);
 return 0;
error:
 viStatusDesc(rm, status, string);
 fprintf(stderr, ”Error: %s\n“, (ViBuf) string);
 return 0;
}

Asynchronous Read/Write
Any INSTR resources can have asynchronous, non-blocking operations associated with them. The basic asynchronous I/O operations are
viReadAsync() and viWriteAsync(). These operations are invoked just like other operations. However, instead of waiting for the actual job
to be done, they simply register the job to be done and return immediately. When I/O is complete, an event is generated to indicate the
completion status.

Before beginning an asynchronous transfer, you must enable the session for the I/O completion event using the viEnableEvent()
operation. After the transfer, you can use the viWaitOnEvent() operation to wait for the VI_EVENT_IO_COMPLETION event.

If you want to abort such an asynchronous operation after a specified time period, use viTerminate() with the unique job ID returned
from the session of the operation to be aborted. If a VI_EVENT_IO_COMPLETION event has not yet occurred for the specified jobId, the
viTerminate() operation raises a VI_EVENT_IO_COMPLETION event.

Clear
The VISA Clear Service lets a program send the device clear command to the device it is associated with. The action that the device takes
depends on the interface to which it is connected. For a GPIB device, this amounts to sending the IEEE 488.1 SDC (04h) command. For a
serial device, the string “*CLS\n” is sent if 488-style protocol is being used.

Invoking a viClear() operation on a device resource not only resets the hardware, it also flushes the formatted I/O read buffer (applies it to
the hardware) and discards the contents of the formatted I/O write buffer used by the Formatted I/O Services for that session.

Trigger
The VISA Trigger Service provides monitoring and control access to the trigger of the device associated with the resource. Specifically, the
viAssertTrigger() operation handles assertion of software triggers for GPIB and serial devices.

Status/Service Request
The VISA Status/Service Request Service allows a program to service requests made by other requesters in a system, and can
procure device status information. Your program can determine if an event is a service request by using the viGetAttribute() operation
to get the value of the VI_ATTR_EVENT_TYPE attribute. A related activity is to use the viWaitOnEvent() operation to wait on the
VI_EVENT_SERVICE_REQUEST event. You can then use the vi-ReadSTB() operation to manually obtain device status information by
reading the status byte of the service request. For example, you might read this byte to determine which GPIB device among several
possibilities is making the request. If the resource cannot obtain the status information from the requester in the timeout period, it returns a
timeout.

Asynchronous Read/Write
Any INSTR resources can have asynchronous, non-blocking operations associated with them. The basic asynchronous I/O operations are
viReadAsync() and viWriteAsync(). These operations are invoked just like other operations. However, instead of waiting for the actual job

Programming examples

156

to be done, they simply register the job to be done and return immediately. When I/O is complete, an event is generated to indicate the
completion status.

Before beginning an asynchronous transfer, you must enable the session for the I/O completion event using the viEnableEvent()
operation. After the transfer, you can use the viWaitOnEvent() operation to wait for the VI_EVENT_IO_COMPLETION event.

If you want to abort such an asynchronous operation after a specified time period, use viTerminate() with the unique job ID returned
from the session of the operation to be aborted. If a VI_EVENT_IO_COMPLETION event has not yet occurred for the specified jobId, the
viTerminate() operation raises a VI_EVENT_IO_COMPLETION event.

Clear
The VISA Clear Service lets a program send the device clear command to the device it is associated with. The action that the device takes
depends on the interface to which it is connected. For a GPIB device, this amounts to sending the IEEE 488.1 SDC (04h) command. For a
serial device, the string “*CLS\n” is sent if 488-style protocol is being used.

Invoking a viClear() operation on a device resource not only resets the hardware, it also flushes the formatted I/O read buffer (applies it to
the hardware) and discards the contents of the formatted I/O write buffer used by the Formatted I/O Services for that session.

Trigger
The VISA Trigger Service provides monitoring and control access to the trigger of the device associated with the resource. Specifically, the
viAssertTrigger() operation handles assertion of software triggers for GPIB and serial devices.

Status/Service request
The VISA Status/Service Request Service allows a program to service requests made by other requesters in a system, and can
procure device status information.Your program can determine if an event is a service request by using the viGetAttribute() operation
to get the value of the VI_ATTR_EVENT_TYPE attribute. A related activity is to use the viWaitOnEvent() operation to wait on the
VI_EVENT_SERVICE_REQUEST event. You can then use the vi- ReadSTB() operation to manually obtain device status information by
reading the status byte of the service request. For example, you might read this byte to determine which GPIB device among several
possibilities is making the request. If the resource cannot obtain the status information from the requester in the timeout period, it returns a
timeout.

Reading and writing formatted data
Note: In version 1.1 and earlier versions of TekVISA, the operations described in this section return the value NOT
IMPLEMENTED.

Buffering can improve performance and throughput by making it possible to transfer large blocks of data to and from devices at certain
times. The Formatted I/O Services support formatting and intermediate buffering in two ways:

Note: These distinctions are analogous to the differences in syntax between the formatted I/O operation fprint() (implicit buffering
held by a file pointer) and buffered I/O operation sprint() (explicit user-specified buffering) in the ANSI C/C++ languages.

• The TekVISA formatted I/O operations write to an implicit write buffer and read from an implicit read buffer associated with a virtual
instrument. These operations include viPrintf(), viScanf(), viQueryf(), and the related variable list operations (viVPrintf(), viVScanf(),
and ViVQueryf()). In this document, these implicit buffers that are held by a file pointer are called the formatted I/O buffers.

The related operations viSetBuf(), viBufRead(), viBufWrite(), and viFlush() can also act on these implicit buffers to set the buffer
size, read and write segments of the buffer, and flush the contents (by applying them to the hardware in the case of the read buffer, or
discarding them in the case of the write buffer).

Invoking a viClear() operation on a device resource not only resets the hardware, it also flushes the formatted I/O read buffer (applies
it to the hardware) and discards the contents of the formatted I/O write buffer used by the formatted I/O operations for that session.

Programming examples

TekVISA Programmer Manual 157

• The TekVISA buffered I/O operations write formatted information to and read it from explicit user-supplied buffers that you provide.
These operations include viSPrintf(), viSScanf() and the related variable list operations (viVSPrintf(), and viVSScanf()).

The related operations viBufRead() and viBufWrite() can also act on these explicit buffers to read data segments from a device into a
user-supplied buffer, and write data segments from a user-supplied buffer to a device.

Since all of these operations actually use the viWrite() and viRead() operations to perform low-level I/O to and from the device, you are
discouraged from mixing the viWrite() and viRead() basic I/O operations with formatted I/O and/or buffered I/O operations in the same
session. If you do mix these operations, you must be careful to flush buffers correctly when moving between operations. It illustrates the
various types of formatted read/write operations supported by VISA.

Figure 6: Types of formatted read/Write operations

Formatted I/O operations
The TekVISA formatted I/O operations write to an implicit write buffer and read from an implicit read buffer associated with a virtual
instrument. Usage of these operations is illustrated in the following example.

FORMATIO.CPP example
The following C++ example, FORMATIO.CPP, includes a main program that opens the Default Resource Manager, opens a session to the
GPIB device with primary address 1 on board 8, calls the ReadWaveform() function to get header and waveform data from a Tektronix
TDS scope, then writes the response to the standard output, and closes the session. At the end of the example, the program closes the
session to the Default Resource Manager.

To review the use of Tektronix TDS scope commands and formatted I/O operations in more detail:

1. The header off command sent using the viPrintf() operation causes the oscilloscope to omit headers on query responses, so
that only the argument is returned. The \n format string sends the ASCII LF character and END identifier.

Programming examples

158

2. The hor:reco? query sent using the viQueryf() operation asks the oscilloscope for the current horizontal record length and
receives the response.The \n format string sends the ASCII LF character and END identifier. The %ld modifier and format code
specify that the argument is a long integer.

3. The data:start %d;data:stop %d\n commands sent using the viPrintf() operation set the starting data point to 0 and
the ending data point to the record length - 1 for the waveform transfer that will be initiated later using a CURVE? query. The %d
format codes specify that the arguments are integers. The \n format string sends the ASCII LF character and END identifier.

4. The WFMOUTPRE:YOFF?\n query sent using the viQueryf() operation asks the oscilloscope for the vertical offset (YOFF) and
receives the response. This information is needed to convert digitizing units to vertical units (typically volts) in order to scale the data.
The %f format code specifies that the argument is a floating point number. The \n format string sends the ASCII LF character and
END identifier.

5. The WFMOutpre:YMULT?\n query sent using the viQueryf() operation asks the oscilloscope for the vertical scale factor
(YMULT) per digitizing level (also called the Y multiple) vertical multiplier and receives the response. This information is needed to
convert digitizing units to vertical units (typically volts) in order to scale the data. The %f format code specifies that the argument is a
floating point number. The \n format string sends the ASCII LF character and END identifier.

6. The DATA:ENCDG RIBINARY;WIDTH 1\n command sent using the viPrintf() operation sets the data format for the
waveform transfer to binary using signed integer data--point representation, with the most significant byte transferred first. The
DATA:WIDTH command sets the number of bytes to transfer to one byte per data point. The \n format string sends the ASCII LF
character and END identifier.

#<a><bbb><data><newline>

Where:

a = the number of b bytes

bbb = the number of bytes to transfer

data = the curve data

newline = a single-byte new-line character at the end
7. The CURVE?\n query sent using the viPrintf() operation asks the oscilloscope to transfer the waveform. The \n format string

sends the ASCII LF character and END identifier. Since the waveform could easily exceed the size of the formatted I/O read buffer,
a viQueryf() is not being used here. Instead, we want to split up the write (viPrintf()) and read (viScanf()) operations, rather than
combining them in a single query.

8. The viFlush(vi, VI_WRITE_BUF | VI_READ_BUF_DISCARD) operation performs two combined tasks before getting the
oscilloscope’s response to the CURVE? query. It transfers the contents of the formatted I/O write buffer (in this case, the CURVE?
query) to the oscilloscope, and discards the contents of the formatted I/O read buffer.This flushing operation should always be
performed before a viScanf() operation that follows a viPrintf() or viBufWrite() operation, to guarantee that flushing occurs.

9. The first viScanf(vi, “%c”, &c)operation reads the first character of the waveform response from the oscilloscope. The %c format code
specifies that the argument is a character. This character is expected to be #.

10. The second viScanf(vi, “%c”, &c)operation reads the next character of the waveform response from the oscilloscope. This
character specifies the width of the next field, which contains the number of bytes of waveform data to transfer, and is expected to be
between 0 and 9.

11. The third viScanf(vi, “%c”, &c)operation reads the characters that represent the number of bytes to transfer. The result of the
previous scan is used as the counter in the FOR loop. Each character read is expected to be between 0 and 9.

12. The program uses the results of the previous scan to allocate the right size for an array of double--word floating--point numbers that
will contain the waveform. Then the fourth viScanf(vi, “%c”, &c) operation reads the waveform itself, using the result of the previous
scan as the counter in the FOR loop. The viScanf() operation accepts input until an END indicator is read or all the format specifiers
in the format string are satisfied.

Programming examples

TekVISA Programmer Manual 159

13. The ptr[i] = (((double) c) - yoffset) * ymult;calculation converts the waveform data results from string
data into a numerical array of double-word floating point numbers, and also converts the data from digitizing units into vertical units
(typically volts in the case of waveform data).

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
// This function reads the currently selected waveform and returns
// it as an array of doubles.
 double* ReadWaveform(ViSession vi, long* elements) {
 ViStatus status;
 float yoffset, ymult;
 ViChar buffer[256];
 ViChar c;
 long count, i;
 double* ptr = NULL;
 assert(elements != NULL);
 status = viSetAttribute(vi, VI_ATTR_WR_BUF_OPER_MODE,VI_FLUSH_ON_ACCESS);
 status = viSetAttribute(vi, VI_ATTR_RD_BUF_OPER_MODE,VI_FLUSH_ON_ACCESS);

 // Turn headers off, this makes parsing easier
 status = viPrintf(vi, “header off\n”);
 if (status < VI_SUCCESS) goto error;

 // Get record length value
 status = viQueryf(vi, “hor:reco?\n”, “%ld”, elements);
 if (status < VI_SUCCESS) goto error;

 // Make sure start, stop values for curve query match the
 // full record length
 status = viPrintf(vi, “data:start %d;data:stop %d\n”, 0,(*elements)-1);
 if (status < VI_SUCCESS) goto error;

 // Get the yoffset to help calculate the vertical values.
 status = viQueryf(vi, “WFMOUTPRE:YOFF?\n”, “%f”, &yoffset);
 if (status < VI_SUCCESS) goto error;

 // Get the ymult to help calculate the vertical values.
 status = viQueryf(vi, “WFMOutpre:YMULT?\n”, “%f”, &ymult);
 if (status < VI_SUCCESS) goto error;

 // Request 8--bit binary data on the curve query
 status = viPrintf(vi, “DATA:ENCDG RIBINARY;WIDTH 1\n”);
 if (status < VI_SUCCESS) goto error;

 // Request the curve
 status = viPrintf(vi, “CURVE?\n”);
 if (status < VI_SUCCESS) goto error;

 // Always flush if a viScanf follows a viPrintf or
 // viBufWrite.
 status = viFlush(vi, VI_WRITE_BUF | VI_READ_BUF_DISCARD);
 if (status < VI_SUCCESS) goto error;

Programming examples

160

 // Get first char and validate
 status = viScanf(vi, “%c”, &c);
 if (status < VI_SUCCESS) goto error;
 assert(c == ’#’);
 // Get width of element field.
 status = viScanf(vi, “%c”, &c);
 if (status < VI_SUCCESS) goto error;
 assert(c >= ’0’ && c <= ’9’);
 // Read element characters
 count = c -- ’0’;
 for (i = 0; i < count; i++) {
 status = viScanf(vi, “%c”, &c);
 if (status < VI_SUCCESS) goto error;
 assert(c >= ’0’ && c <= ’9’);
 }
 // Read waveform into allocated storage
 ptr = (double*) malloc(*elements*sizeof(double));
 for (i = 0; i < *elements; i++) {
 status = viScanf(vi, “%c”, &c);
 if (status < VI_SUCCESS) goto error;
 ptr[i] = (((double) c) -- yoffset) * ymult;
 }
 status = viFlush(vi, VI_WRITE_BUF | VI_READ_BUF_DISCARD);
 if (status < VI_SUCCESS) goto error;
 return ptr;
error:
 // Report error and clean up
 viStatusDesc(vi, status, buffer);
 fprintf(stderr, ”failure: %s\n“, buffer);
 if (ptr != NULL) free(ptr);
 return NULL;
}

// This program reads a waveform from a Tektronix
// TDS scope and writes the floating point values to
// stdout.
int main(int argc, char* argv[])
{
 ViSession rm = VI_NULL, vi = VI_NULL;
 ViStatus status;
 ViChar buffer[256];
 double* wfm = NULL;
 long elements, i;
 // Open a default session
 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;
 // Open the GPIB device at primary address 1, GPIB board 8
 status = viOpen(rm, ”GPIB8::1::INSTR“, VI_NULL, VI_NULL,&vi);
 if (status < VI_SUCCESS) goto error;
 // Read waveform and write it to stdout
 wfm = ReadWaveform(vi, &elements);
 if (wfm != NULL) {

Programming examples

TekVISA Programmer Manual 161

 for (i = 0; i < elements; i++) {
 printf(”%f\n“, wfm[i]);
 }
 }
 // Clean up
 if (wfm != NULL) free(wfm);
 viClose(vi); // Not needed, but makes things a bit more
 // understandable
 viClose(rm);
 return 0;
error:
 // Report error and clean up
 viStatusDesc(vi, status, buffer);
 fprintf(stderr, ”failure: %s\n“, buffer);
 if (rm != VI_NULL) viClose(rm);
 if (wfm != NULL) free(wfm);
 return 1;
}

Resizing the formatted I/O buffers

The VISA system provides separate formatted I/O read and write buffers that you can modify using the viSetBuf() operation. Use of these
buffers is illustrated in the following example.

BUFFERIO.CPP Example
The following C++ example, BUFFERIO.CPP, demonstrates the performance effect of resizing the formatted I/O buffers. In this example
as in the FORMATIO.CPP example, the main program opens the Default Resource Manager, opens a session to the GPIB device with
primary address 1 on board 8, and calls the ReadWaveform() function to get header and waveform data from a Tektronix TDS scope.

In this case, before calling the ReadWaveform() function, the program starts a FOR loop that sets the read buffer size to 10, 100, 1000,
and 10000 to show the effect of buffer sizes on performance. Each time through the loop, the program initializes a benchmark start time,
calls the ReadWaveform() function five times to read segments of the waveform, and then writes the buffer size and the time required to
read the buffer. After printing all the benchmark numbers for comparison, the program closes the session to the oscilloscope and closes
the session to the Default Resource Manager.

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <time.h>
// This function reads the currently selected waveform and returns
// it as an array of doubles.
double* ReadWaveform(ViSession vi, long* elements) {
.
. (same as FORMATIO Example)
.
 return ptr;
error:
 // Report error and clean up
 viStatusDesc(vi, status, buffer);
 fprintf(stderr, ”failure: %s\n“, buffer);

Programming examples

162

 if (ptr != NULL) free(ptr);
 return NULL;
}
// This program shows the performance effect of sizing buffers
// with buffered I/O.
int main(int argc, char* argv[])
{
 ViSessionrm = VI_NULL, vi = VI_NULL;
 ViStatus status;
 ViChar buffer[256];
 double* wfm = NULL;
 long elements, i;
 ViUInt32 bufferSize = 10;
 unsigned long start, total;

 // Open a default session
 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;

 // Open the GPIB device at primary address 1, GPIB board 8
 status = viOpen(rm, ”GPIB8::1::INSTR“, VI_NULL, VI_NULL, &vi);
 if (status < VI_SUCCESS) goto error;

 // Try buffer sizes 10, 100, ..., 10000 to show effect
 // of buffer sizes on performance.

 for (bufferSize = 10; bufferSize <= 10000; bufferSize *= 10)
 {
 // Set new buffer size
 viSetBuf(vi, VI_READ_BUF, bufferSize);
 // Get Start time for benchmark
 start = time(NULL);
 // Loop several times
 for (i = 0; i < 5; i++) {
 wfm = ReadWaveform(vi, &elements);
 }
 // Print results
 total = time(NULL) -- start;
 printf(”bufSize %d, time %3.1fs\n“, bufferSize,((double) total)/5.0);
 }
 // Clean up
 if (wfm != NULL) free(wfm);
 viClose(vi); // Not needed, but makes things a bit more
 // understandable
 viClose(rm);
 return 0;
error:
 // Report error and clean up
 viStatusDesc(vi, status, buffer);
 fprintf(stderr, ”failure: %s\n“, buffer);
 if (rm != VI_NULL) viClose(rm);
 if (wfm != NULL) free(wfm);

Programming examples

TekVISA Programmer Manual 163

 return 1;
}

Flushing the formatted I/O buffer
The formatted I/O write buffer is maintained by the formatted I/O write operations—viPrintf(), viVPrintf(), and viBufWrite(). Flushing a
write buffer immediately sends any queued data to the device. To explicitly flush the write buffer, you can call the viFlush() operation with a
write flag set.

The formatted I/O read buffer is maintained by the formatted I/O read operations— viScanf(), viVScanf(), and viBufRead(). Flushing a
read buffer discards the data in the read buffer. This guarantees that the next call to viScanf() (or a related buffered read operation) reads
data directly from the device rather than from queued data in the read buffer. To explicitly flush the read buffer, you can call the viFlush()
operation with a read flag set.

Although you can explicitly flush the buffers by calling the viFlush() operation, the buffers are flushed implicitly under some conditions.
These conditions vary for the viPrintf() and viScanf() operations.

The write buffer is flushed automatically under the following conditions:

• When an END-indicator character is sent.
• When the buffer is full.
• In response to a call to viSetBuf() with the VI_WRITE_BUF flag set.

Invoking a viClear() operation on a device resource also flushes the read buffer and discards the contents of the write buffer used by the
formatted I/O operations for that session. At such a time, any ongoing operation through the read/write port must be aborted.

Refer back to the FORMATIO.CPP example for sample usage of the viPrintf(), viScanf(), viQueryf(), and viFlush() operations with
Tektronix TDS oscilloscopes.

Buffered I/O operations
A buffered I/O write operation writes formatted data to an explicit user-specifed buffer, while a buffered I/O read operation reads formatted
data from an explicit user-specified buffer. These operations include viSPrintf(), viSScanf() and the related variable list operations
(viVSPrintf(), and viVSScanf()).

The related operations viBufRead() and viBufWrite() can also act on these explicit buffers to read data segments from a device into a
user-supplied buffer, and write data segments from a user-supplied buffer to a device.

Variable list operations
The VISA variable list operations use a pointer argument to a variable argument list, rather than the variable list itself as the argument.
The VISA variable list operations include viVPrintf, viVSPrintf, viVScanf, viVSScanf, and viVQueryf. These operations are identical
in operation to their ANSI C/C++ counterpart versions of variable list operations. Please refer to a C programming manual for more
information.

Controlling the serial I/O buffers
You can use the viSetBuf() operation to control the sizes of the serial communication receive and transmit buffers. By resizing these
buffers, you can realize performance improvements for serial device communication comparable to those derived from resizing the
formatted I/O buffers. Refer to the section entitled Resizing the Formatted I/O Buffers for an example illustrating buffer resizing.

Programming examples

164

Handling events
An event is a means of communicating between a VISA resource and its applications. Typically, events occur because a condition requires
the attention of applications.

VISA provides two independent mechanisms for an application to receive events: queuing and callback handling. The queuing and
callback mechanisms are suitable for different programming styles:

• The queuing mechanism is generally useful for non-critical events that do not need immediate servicing. To receive events using the
queuing mechanism, an application must invoke the viWaitOnEvent() operation. All of the occurrences of a specified event type are
placed in a session-based event queue. There is one event queue per event type per session. The application can receive the event
occurrences later by dequeuing them with the viWaitOnEvent() operation.

• The callback mechanism is useful when immediate responses are needed. To receive events using the callback mechanism, an
application must install a callback handler using the viInstallHandler() operation. The application is called directly by invoking a
handler function that the application installed prior to enabling the event. The callback handler is invoked on every occurrence of the
specified event.

By default, a session is not enabled to receive any events by either mechanism. Since these mechanisms work independently of
each other, both can be enabled at the same time. An application can enable either or both mechanisms using the viEnableEvent()
operation. The callback handling mechanism can be enabled for one of two modes: immediate callback or delayed callback queuing. The
viEnableEvent() operation is also used to switch between the two callback modes. The viDisableEvent() operation is used to disable
either or both mechanisms, regardless of the current state of the other.

When an application receives an event occurrence via either mechanism, it can determine information about the event by invoking
viGetAttribute() on that event. When the application no longer needs the event information, it must call viClose() on that event. The
viClose() operation is used not only to close sessions, but also to free events returned from the viWaitOnEvent() operation.

Queueing Mechanism
Applications can use the queuing mechanism in VISA to receive events only when it requests them. An application retrieves the event
information by using the viWaitOnEvent() operation. If the specified event(s) exist in the queue, these operations retrieve the event
information and return immediately. Otherwise, the application thread is blocked until the specified event(s) occur or until the timeout
expires, whichever happens first. When an event occurrence unblocks a thread, the event is not queued for the session on which the wait
operation was invoked.

Once a session is enabled for queuing, all the event occurrences of the specified event type are queued. When a session is disabled for
queuing, any further event occurrences are not queued, but event occurrences that were already in the event queue are retained. The
retained events can be dequeued at any time using the viWaitOnEvent() operation. An application can explicitly clear (flush) the event
queue for a specified event type using the viDiscardEvents() operation.

SRQWAIT.CPP example
The following C++ example, SRQWAIT.CPP, demonstrates event handling using the queuing mechanism. The program begins by opening
the Default Resource Manager and opening a session to the GPIB device with primary address 1 on board 8. Next the program enables
notification of the VI_EVENT_SERVICE_REQ event.

The program then uses a series of viWrite() operations to send Tektronix TDS scope commands to set up the instrument. These
commands do the following:

1. The :DATA:ENCDG RIBINARY;SOURCE CH1;START 1;STOP 500;WIDTH 2 commands do the following:

a. Set the data format for the waveform transfer to binary using signed integer data--point representation, with the most significant
byte transferred first.

b. Set the data source to channel 1.
c. Set the starting data point to 0 and the ending data point to 500 for the waveform transfer that will be initiated later.
d. Set the number of bytes to transfer to two bytes per data point.

Programming examples

TekVISA Programmer Manual 165

2. The :ACQUIRE:STOPAFTER SEQUENCE;REPET 0;STATE 0;MODE SAMPLE commands tell the oscilloscope to:

a. Acquire a single sequence (equivalent to pressing SINGLE from the front panel).
b. Disable repetitive mode (equivalent to setting Equivalent Time Auto/Off in the Acquisition control window).
c. Stop acquisition (equivalent to pressing STOP from the front panel).
d. Set the acquisition mode to sample (equivalent to selecting HORIZONTAL/ACQUISITION from the HORIZ/ACQ menu and then

choosing SAMPLE from the Acquisition Mode group box.
3. The DESE 1;*ESE 1;*SRE 32 commands and the *CLS command tell the oscilloscope to:

a. Set registers to await an Operation Complete (OPC) event (bit 1) in the event queue. This event is summarized in the Event Status
Bit(ESB) of the Status Byte Register.

b. Set the Event Status Bit (bit 5) to await a Service Request (SRQ).
c. Clear the event registers.

4. In the For loop, the :ACQUIRE:STATE 1 command starts acquisition and is equivalent to pressing the front panel RUN button or
setting the state to ON.

5. The *OPC command generates the Operation Complete message in the Standard Event Status Register (SESR) and generates a
Service Request (SRQ) when all pending operations complete. This allows programmers to synchronize operation of the oscilloscope
with their application program.

After using the viWaitOnEvent() operation to wait for an SRQ event to occur, the program prints a success or failure message, uses the
viDisableEvent() operation to disable the VI_EVENT_SERVICE_REQ event, closes the session to the oscilloscope, and closes the session
to the Default Resource Manager.

// srqwait.cpp :Defines the entry point for the console application.
//
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include ”visa.h“
int main(int argc, char* argv[])
{
 ViSession rm, vi;
 ViStatus status;
 char string[256];
 ViUInt32 retCnt;
 int i;
 ViUInt16 stb;
 ViEventType eventType = 0;
 ViEvent context = 0;

 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;

 status = viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi);
 if (status < VI_SUCCESS) goto error;

 status = viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE,VI_NULL);
 if (status < VI_SUCCESS) goto error;

 // Setup instrument
 status = viWrite(vi, (ViBuf)”:DATA:ENCDG RIBINARY;SOURCE CH1;START 1;STOP 500;WIDTH 2“, 56,
&retCnt);
 if (status < VI_SUCCESS) goto error;

Programming examples

166

 status = viWrite(vi, (ViBuf)”:ACQUIRE:STOPAFTER SEQUENCE;REPET 0;STATE 0;MODE SAMPLE“,55,
&retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”DESE 1;*ESE 1;*SRE 32“, 21,&retCnt);
 if (status < VI_SUCCESS) goto error;
 // Do cause some srqs
 for (i = 0; i < 100; i++) {
 status = viWrite(vi, (ViBuf) ”*CLS“, 4, &retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”:ACQUIRE:STATE 1“, 16,&retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”*OPC“, 4, &retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,5000, &eventType, &context);
 if (status >= VI_SUCCESS) {
 printf(”(%d) Received SRQ\n“, i);
 viClose(context);
 } else {
 viStatusDesc(vi, status, string);
 printf(
 ”(%d) viWaitOnEvent Failed -- \”%s\“\n“,
 string);
 }
 viReadSTB(vi, &stb);
 }
 // Cleanup and exit
 status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);
 if (status < VI_SUCCESS) goto error;
 viClose(vi);
 viClose(rm);
 return 0;
 error:
 viStatusDesc(rm, status, string);
 fprintf(stderr, ”Error: %s\n“, (ViBuf) string);
 return 0;
}

Callback mechanism
Applications can use the callback mechanism by installing handler functions that can be called back when a particular event type is
received. The viInstallHandler() operation can be used to install handlers to receive specified event types. The handlers are invoked on
every occurrence of the specified event, once the session is enabled for the callback mechanism. One handler must be installed before a
session can be enabled for sensing using the callback mechanism.

VISA allows applications to install multiple handlers for an event type on the same session. Multiple handlers can be installed through
multiple invocations of the viInstallHandler() operation, where each invocation adds to the previous list of handlers. If more than one
handler is installed for an event type, each of the handlers is invoked on every occurrence of the specified event(s). VISA specifies that the
handlers are invoked in Last In First Out (LIFO) order.

When a handler is invoked, the VISA resource provides the event context as a parameter to the handler. The event context is filled in by
the resource. Applications can retrieve information from the event context object using the viGetAttribute() operation.

Programming examples

TekVISA Programmer Manual 167

An application can supply a reference to any application-defined value while installing handlers. This reference is passed back to the
application as the userHandle parameter to the callback routine during handler invocation. This allows applications to install the same
handler with different application-defined event contexts.

For example, an application can:

• install a handler with a fixed event context value 0x1 on a session for an event type.
• install the same handler with a different event context value, for example 0x2, for the same event type.

The two installations of the same handler are different from one another. Both handlers are invoked when the event of the given type
occurs. However, in one invocation, the value passed to userHandle is 0x1 and in the other it is 0x2. Thus, event handlers are uniquely
identified by a combination of the userHandle handler address and the user event context. This identification is particularly useful when
different handling methods need to be done depending on the user context data. Refer to viEventHandler(), an event service handler
procedure prototype, for more information about writing an event handler.

An application may install the same handler on multiple sessions. In this case, the handler is invoked in the context of each session for
which it was installed.

The callback mechanism of a particular session can be in one of three different states: handling, or suspended handling, or disabled.

• When a session transitions to the handling state, the callback handler is invoked for all the occurrences of the specified event type.
• When a session transitions to the suspended handling state, the callback handler is not invoked for any new event occurrences, but

occurrences are kept in a suspended handler queue. The handler is invoked later, when a transition to the handling state occurs.

In the suspended handling state, a maximum of the VI_ATTR_MAX_QUEUE_LENGTH number of event occurrences are kept
pending. If the number of pending occurrences exceeds the value specified in this attribute, the lowest-priority events are discarded.
An application can explicitly clear (flush) the callback queue for a specified event type using the viDiscardEvents() operation.

• When a session transitions to the disabled state, the session ignores any new event occurrences, but any pending occurrences are
retained in the queue.

SRQ.CPP example
The following C++ example, SRQ.CPP, demonstrates event handling using the callback mechanism. This example first defines a handler
function called ServiceReqEventHandler, which simply prints a message that a service request occurred and returns successfully. The
main program begins by opening the Default Resource Manager and opening a session to the GPIB device with primary address 1 on
board 8. Next the program installs the ServiceReqEventHandler callback handler for the VI_EVENT_SERVICE_REQ event, and then
enables notification of the VI_EVENT_SERVICE_REQ event.

The program then uses a series of viWrite() operations to send Tektronix TDS scope commands that do the following:

1. The :RECALL:SETUP FACTORY and :SELECT:CH1 1;CH2 0;CH3 0;CH4 0 commands reset the instrument to
factory settings and select four channels.

2. The :DATA:ENCDG RIBINARY;SOURCE CH1;START 1;STOP 500;WIDTH 2 commands do the following:

a. Set the data format for the waveform transfer to binary using signed integer data--point representation, with the most significant
byte transferred first.

b. Set the data source to channel 1.
c. Set the starting data point to 0 and the ending data point to 500 for the waveform transfer that will be initiated later.
d. Set the number of bytes to transfer to two bytes per data point.

3. The :ACQUIRE:STOPAFTER SEQUENCE;REPET 0;STATE 0;MODE SAMPLE commands tell the oscilloscope to:

a. Acquire a single sequence (equivalent to pressing SINGLE from the front panel).
b. Disable repetitive mode (equivalent to setting Equivalent Time Auto/Off in the Acquisition control window).
c. Stop acquisition (equivalent to pressing STOP from the front panel)

Programming examples

168

d. Set the acquisition mode to sample (equivalent to selecting HORIZONTAL/ACQUISITION from the HORIZ/ACQ menu and then
choosing SAMPLE from the Acquisition Mode group box.

4. The DESE 1;*ESE 1;*SRE 32 commands and the *CLS command tell the oscilloscope to:

a. Set registers to await an Operation Complete (OPC) event (bit 1) in the event queue. This event is summarized in the Event Status
Bit(ESB) of the Status Byte Register.

b. Set the Event Status Bit (bit 5) to await a Service Request (SRQ).
c. Clear the event registers.

5. The :ACQUIRE:STATE RUN command starts acquisition and is equivalent to pressing the front panel RUN button.
6. The *OPC command generates the Operation Complete message in the Standard Event Status Register (SESR) and generates a

Service Request (SRQ) when all pending operations complete. This allows programmers to synchronize operation of the oscilloscope
with their application program.

After waiting long enough for an SRQ event to occur, the program disables the VI_EVENT_SERVICE_REQ event, uninstalls the
ServiceReqEventHandle handler, closes the session to the oscilloscope, and closes the session to the Default Resource Manager.

// srq.cpp : Defines the entry point for the console application.
//
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include ”visa.h“
ViStatus _VI_FUNCH ServiceReqEventHandler(ViSession vi, ViEventType eventType, ViEvent event, ViAddr
userHandle)
{
 printf(”srq occurred\n“);
 return VI_SUCCESS;
}
int main(int argc, char* argv[])
{
 ViSession rm, vi;
 ViStatus status;
 char string[256];
 ViUInt32 retCnt;
 status = viOpenDefaultRM(&rm);
 if (status < VI_SUCCESS) goto error;
 status = viOpen(rm, ”GPIB8::1::INSTR“, NULL, NULL, &vi);
 if (status < VI_SUCCESS) goto error;

 // Setup and enable event handler
 status = viInstallHandler(vi, VI_EVENT_SERVICE_REQ,
 ServiceReqEventHandler, NULL);
 if (status < VI_SUCCESS) goto error;
 status = viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR,VI_NULL);
 if (status < VI_SUCCESS) goto error;

 // Setup instrument
 status = viWrite(vi, (ViBuf) ”:RECALL:SETUP FACTORY“, 21,&retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”:SELECT:CH1 1;CH2 0;CH3 0;CH4 0“, 31, &retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”:DATA:ENCDG RIBINARY;SOURCE CH1;START 1;STOP 500;WIDTH 2“, 56,
&retCnt);

Programming examples

TekVISA Programmer Manual 169

 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”:ACQUIRE:STOPAFTER SEQUENCE;REPET 0;STATE 0;MODE SAMPLE“, 55,
 &retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”DESE 1;*ESE 1;*SRE 32“, 21,&retCnt);
 if (status < VI_SUCCESS) goto error;

 // Do a single acq
 status = viWrite(vi, (ViBuf) ”*CLS“, 4, &retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”:ACQUIRE:STATE 1“, 16, &retCnt);
 if (status < VI_SUCCESS) goto error;
 status = viWrite(vi, (ViBuf) ”*OPC“, 4, &retCnt);
 if (status < VI_SUCCESS) goto error;

 // Wait around long enough for srq event to occur
 ::Sleep(10000);

 // Cleanup and exit
 status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
 if (status < VI_SUCCESS) goto error;
 status = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
 ServiceReqEventHandler, NULL);
 if (status < VI_SUCCESS) goto error;
 viClose(vi);
 viClose(rm);
 return 0;
error:
 viStatusDesc(rm, status, string);
 fprintf(stderr, ”Error: %s\n“, (ViBuf) string);
 return 0;
}

Exception handling

Note: In version 1.1 and earlier versions of TekVISA, support for exception handling is NOT IMPLEMENTED.

In VISA, exceptions are defined as events, and exception handling takes place using the callback mechanism. Each error condition defined
by operations of resources can cause exception events. When an error occurs, normal execution of that session operation halts. The
operation notifies the application of the error condition by raising an exception event (event type VI_EVENT_EXCEPTION). Raising the
exception event invokes the application--specified exception callback routine(s) installed for the particular session, based on whether this
exception event is currently enabled for the given session. The notification includes the cause of the error. Once notified, the application
can tell the VISA system the action to take, depending on the error’s severity.

Exception handling uses the same operations as those used for general event handling. Your application can install a callback handler
that is invoked on an error. This installation can be done using the viInstallHandler() operation on a session. Once a handler is installed,
a session can be enabled for exception event using the viEnableEvent() operation. The exception event is like any other event in VISA,
except that the queuing and suspended handling mechanisms are not allowed.

When an error occurs for a session operation, the exception handler is executed synchronously; that is, the operation that caused the
exception blocks until the exception handler completes its execution. When invoked, the exception handler can check the error condition
and instruct the exception operation to take a specific action. For example:

Programming examples

170

• The handler can instruct the exception operation to continue normally (returning the indicated error code) or to not invoke any
additional handlers (in the case of handler nesting).

• A given implementation may choose to provide implementation-specific return codes for users’ exception handlers, and may take
alternate actions based on those codes.

• A vendor-specific return code from an exception handler might cause the VISA implementation to close all sessions for the given
process and exit the application.

Note: Using vendor-specific return codes makes an application incompatible with other implementations.

Generating an Error condition on asynchronous operations
One situation in which an exception event will not be generated is in the case of asynchronous operations. If the error is detected after
the operation is posted (that is, once the asynchronous portion has begun), the status is returned normally via the I/O completion event
(type IO_COMPLETION_EVENT). However, if an error occurs before the asynchronous portion begins (that is, the error is returned from
the asynchronous operation itself), then the exception event will still be raised. This deviation is because asynchronous operations already
raise an event when they complete, and this I/O completion event may occur in the context of a separate thread previously unknown to the
application. In summary, a single application event handler can easily handle error conditions arising from both exception events and failed
asynchronous operations.

Locking and unlocking resources
Summarize the main point of the content and explain why this information is important to understand. The content of shortdesc is rendered
as the first paragraph of the topic and displays as roll-over information on links in online deliverables. Applications can open multiple
sessions to a resource simultaneously and access the resource through the different sessions concurrently. However, an application
accessing a resource might want to restrict other applications or sessions from accessing the same resource. For example, an application
might need sole access to a resource in order to perform a sequence of writes. VISA defines a locking mechanism to restrict resource
access in such special circumstances. The viLock() operation is used to acquire a lock on a resource and the viUnlock() operation is
used to relinquish the lock.

The VISA locking mechanism enforces arbitration of access to resources on a per-session basis. If a session locks a resource, operations
invoked on the resource through other sessions are either serviced or returned with an error, depending on the operation and the type of
lock used.

If a VISA resource is not locked by any of its sessions, all sessions have full privilege to invoke any operation and update any global
attributes. Sessions are not required to have locks to invoke operations or update global attributes. However, if some other session has
already locked the resource, attempts to update global attributes or execute certain operations will fail.

Locking types and access privileges
VISA defines two different types of locks: exclusive locks and shared locks.

• If a session has an exclusive lock to a resource, other sessions cannot modify global attributes or invoke operations, but can still get
attributes. Locking a resource restricts access from other sessions and prevents other sessions from acquiring an exclusive lock. In
the case where an exclusive lock is acquired, locking a resource guarantees that operations do not fail because other sessions have
acquired a lock on that resource.

• Shared locks are similar to exclusive locks in terms of access privileges, but can still be shared between multiple sessions. If a session
has a shared lock to a resource, it can perform any operation and update any global attribute in that resource, unless some other
session has an exclusive lock. Other sessions with shared locks can also modify global attributes and invoke operations. A session
that does not have a shared lock will lack this capability.

The VI_ATTR_RSRC_LOCK_STATE attribute specifies the current locking state of a resource on a given session.

Programming examples

TekVISA Programmer Manual 171

In TekVISA, only INSTR resource operations are restricted by the locking scheme. Also, not all operations are restricted by locking. Some
operations may be permitted even when there is an exclusive lock on a resource. Likewise, some global attributes may not be read when
there is any kind of lock on the resource. These exceptions, when applicable, are mentioned in the descriptions of individual operations
and attributes in the Reference part of this manual.

EXLOCKEXAM.CPP example
The following C++ example, EXLOCKEXAM.CPP, demonstrates exclusive locking of a resource. In this example, if a -l is typed on the
command line when the executable is invoked, the lockflag is set to TRUE. The program then opens the Default Resource Manager and
opens a session to the GPIB device with primary address 1 on board 8. Next the program opens a FOR loop that will iterate 100 times.

Each time through the loop, if lockflag is TRUE, the program uses the vilock() operation toset an exclusive lock on the device for an infinite
period of time. The program then uses a series of viWrite() and viRead() operations to send and receive Tektronix TDS scope commands
and responses as follows:

1. The :ch1:scale? command queries the oscilloscope for the vertical scale of channel 1. Sending this command is equivalent to
selecting Vertical Setup from the Vertical menu and then viewing the Scale. The program reads the response from the scope and then
prints it, along with the number of times the program has been through the FOR loop.

2. The :ch1:position? command queries the oscilloscope for the vertical position setting for channel 1. This command is
equivalent to selecting Position from the Vertical menu.vertical Position/Scale of channel 1. The program reads the response from the
scope and then prints it, along with the number of times the program has been through the FOR loop.

Each time through the loop, the program unlocks the device using the viUnlock() operation. Once the program exits the FOR loop, it
closes the session to the oscilloscope, and closes the session to the Default Resource Manager.

#include <stdio.h>
#include <stdlib.h>
#include ”visa.h”
int main(int argc, char* argv[])
{
ViSession rm = VI_NULL, vi = VI_NULL;
ViStatus status;
char string[256];
ViUInt32 retCnt;
int i = 0;
bool lockflag = false;
bool bLockState = false;
if (argc == 2 && argv[1][0] == ’--’ && argv[1][1] == ’l’) {
lockflag = true;
}
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
status = viOpen(rm, ”GPIB8::1::INSTR”, NULL, NULL, &vi);
if (status < VI_SUCCESS) goto error;
for (i = 1; i < 100; i++) {
if (lockflag) {
viLock(vi, VI_EXCLUSIVE_LOCK, VI_TMO_INFINITE,
NULL, NULL);
bLockState = true;
}
status = viWrite(vi, (ViBuf) ”ch1:scale?”, 10, &retCnt);
if (status < VI_SUCCESS) goto error;
status = viRead(vi, (ViBuf) string, 256, &retCnt);
if (status < VI_SUCCESS) goto error;

Programming examples

172

printf(”%d: scale %s”, i, string);
status = viWrite(vi, (ViBuf) ”ch1:position?”, 13, &retCnt);
if (status < VI_SUCCESS) goto error;
status = viRead(vi, (ViBuf) string, 256, &retCnt);
if (status < VI_SUCCESS) goto error;
printf(”%d: position %s”, i, string);
if (lockflag) {
viUnlock(vi);
bLockState = false;
}
}
viClose(vi);
viClose(rm);
return 0;
error:
viStatusDesc(rm, status, string);
fprintf(stderr, ”Error: %s\n”, (ViBuf) string);
if (bLockState && vi != VI_NULL)
viUnlock(vi);
if (vi != VI_NULL)
viClose(vi);
if (rm != VI_NULL)
viClose(rm);
return 0;

Testing exclusive locking
You can see for yourself how exclusive locking works by running two instances of the program as follows:

1. Bring up an MS-DOS Prompt window, change to the directory where the EXLOCKEXAM.EXE file is located, and type:

EXLOCKEXAM -l

Note: Be sure to type l for locked, not the number 1.

2. Before you press Enter, bring up another MS-DOS Prompt window, change to the same directory, and type
3. Now press Enter in each window in quick succession.

The locked instance runs and prints correctly, while the unlocked instance exits with an error.
4. Try running the programs again with both instances having the -l lock switch, or try running them with neither having the -l lock switch,

to see the possibilities.

If you run two instances with the -l option, both will run correctly. If you run two instances at once without the -l option, they will not work
correctly (and will terminate with an error).

Lock sharing
Because the VISA locking mechanism is session-based, multiple threads sharing a session that has locked a resource have the same
access privileges to that resource. Some applications, however, with separate sessions to a resource might want all those sessions to
have the same privilege as the session that locked the resource. In other cases, there might be a need to share locks among sessions
in different applications. Essentially, sessions that acquire a lock to a resource may share the lock with other sessions they select, and
exclude access from other sessions.

Programming examples

TekVISA Programmer Manual 173

VISA defines a shared lock type that gives exclusive access privileges to a session, along with the discretionary capability to share these
exclusive privileges. A session can acquire a shared lock on a resource to get exclusive access privileges to it. When sharing the resource
using a shared lock, the viLock() operation returns an accessKey that can be used to share the lock. The session can then share this lock
with any other session by passing around the accessKey.

Before other sessions can access the locked resource, they need to acquire the lock by passing the accesskey in the requestedKey
parameter of the viLock() operation. Invoking viLock() with the same key will register the new session to have the same access privilege
as the original session. The session that acquired the access privileges through the sharing mechanism can also pass the access key
to other sessions for resource sharing. All the sessions sharing a resource using the shared lock should synchronize their accesses to
maintain a consistent state of the resource.

VISA provides the flexibility for applications to specify a key to use as the accessKey, instead of VISA generating the accessKey.
Applications can suggest a key value to use through the requestedKey parameter of the viLock() operation. If the resource was not
locked, the resource will use this requestedKey as the accessKey. If the resource was locked using a shared lock and the requestedKey
matches the key with which the resource was locked, the resource will grant shared access to the session. If an application attempts
to lock a resource using a shared lock and passes VI_NULL as the requestedKey parameter, VISA will generate an accessKey for the
session.

A session seeking to share an exclusive lock with other sessions needs to acquire a shared lock for this purpose. If it requests an exclusive
lock, no valid access key will be returned. Consequently, the session will not be able to share it with any other sessions. This precaution
minimizes the possibility of inadvertent or malicious access to the resource.

Acquiring an exclusive lock while owning a shared lock
When multiple sessions have acquired a shared lock, VISA allows one of the sessions to acquire an exclusive lock along with the shared
lock it is holding. That is, a session holding a shared lock could also acquire an exclusive lock using the viLock() operation. The session
holding both the exclusive and shared lock will have the same access privileges that it had when it was holding the shared lock only.
However, this would prevent other sessions holding the shared lock from accessing the locked resource. When the session holding the
exclusive lock releases the resource using the viUnlock() operation, all the sessions (including the one that had acquired the exclusive
lock) will again have all the access privileges associated with the shared lock. This is useful when multiple sessions holding a shared lock
must synchronize. This can also be used when one of the sessions must execute in a critical section.

In the reverse case in which a session is holding an exclusive lock only (no shared locks), VISA does not allow it to change to a shared
lock.

Nested locks
VISA supports nested locking. That is, a session can lock the same VISA resource multiple times for the same lock type. Unlocking the
resource requires an equal number of invocations of the viUnlock() operation. A resource can be actually unlocked only when the lock
count is 0.

Each session maintains a separate lock count for each type of lock. Repeated invocations of the viLock() operation for the same session
will increase the appropriate lock count, depending on the type of lock requested. In the case of a shared lock, nesting viLock() calls will
return with the same accessKey every time. In case of an exclusive lock, viLock() will not return any accessKey, regardless of whether it is
nested or not.

A session does not need to pass in the access key obtained from the previous invocation of viLock() to gain a nested shared lock on the
resource. However, if an application does pass in an access key when nesting on shared locks, it must be the correct one for that session.

SHAREDLOCK.CPP example
The following C++ example, SHAREDLOCK.CPP, demonstrates acquiring an exclusive lock while holding a shared lock, and also
illustrates nested locking. In this example, the program opens the Default Resource Manager and opens a session to the GPIB device with
primary address 1 on board 8. The program then uses the vilock() operation to establish a shared lock on the device for an infinite period

Programming examples

174

of time, with “mykey” defined as the key to the lock. A shared lock allows other applications that use the same key to have access to the
specified resource. Next the program opens a FOR loop that will iterate 100 times.

Each time through the loop, the program uses the vilock() operation toset an exclusive lock on the device for an infinite period of time.
This lock is nested inside the shared lock on the resource. The program then uses a series of viWrite() and viRead() operations to send
and receive Tektronix TDS scope commands and responses as follows:

1. The :ch1:scale? command queries the oscilloscope for the vertical scale of channel 1. Sending this command is equivalent to
selecting Vertical Setup from the Vertical menu and then viewing the Scale. The program reads the response from the scope and then
prints it, along with the number of times the program has been through the FOR loop.

2. The :ch1:position? command queries the oscilloscope for the vetical position setting for channel 1. This command is
equivalent to selecting Position from the Vertical menu.vertical Position/Scale of channel 1. The program reads the response from the
scope and then prints it, along with the number of times the program has been through the FOR loop.

Each time through the loop, the program unlocks the exclusive lock on the device using the viUnlock() operation, and sleeps long enough
for a cooperating program that shares the lock to execute. Once the program exits the FOR loop, it unlocks the outer shared lock on the
device using the viUnlock() operation, closes the session to the oscilloscope, and closes the session to the Default Resource Manager.

#include <stdio.h>
#include <stdlib.h>
#include ”visa.h”
#include <windows.h>
#include <signal.h>
ViSession rm = VI_NULL, vi = VI_NULL;
int main(int argc, char* argv[])
{
ViStatus status;
char string[256];
ViUInt32 retCnt;
int i = 0;
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
status = viOpen(rm, ”GPIB8::1::INSTR”, VI_NULL, VI_NULL, &vi);
if (status < VI_SUCCESS) goto error;
// A shared lock only allows other applications that use the same
// key to have access to the specified resource.
viLock(vi, VI_SHARED_LOCK, VI_TMO_INFINITE, ”mykey”, VI_NULL);
for (i = 1; i < 100; i++) {
viLock(vi, VI_EXCLUSIVE_LOCK, VI_TMO_INFINITE,
VI_NULL, VI_NULL);
status = viWrite(vi, (ViBuf) ”ch1:scale?”, 10, &retCnt);
if (status < VI_SUCCESS) goto error;
status = viRead(vi, (ViBuf) string, 256, &retCnt);
if (status < VI_SUCCESS) goto error;
printf(”%d: scale %s”, i, string);
status = viWrite(vi, (ViBuf) ”ch1:position?”, 13, &retCnt);
if (status < VI_SUCCESS) goto error;
status = viRead(vi, (ViBuf) string, 256, &retCnt);
if (status < VI_SUCCESS) goto error;
printf(”%d: position %s”, i, string);
viUnlock(vi);
::Sleep(1000);
}
// Clean up and exit

Programming examples

TekVISA Programmer Manual 175

viUnlock(vi);
viClose(vi);
viClose(rm);
return 0;
error:
// Print error info
viStatusDesc(rm, status, string);
fprintf(stderr, ”Error: %s\n”, (ViBuf) string);
// Clean up
if (vi != VI_NULL) {
// clear all remaining locks
while (viUnlock(vi) >= VI_SUCCESS)
;
viClose(vi);
}
if (rm != VI_NULL)
viClose(rm);

Testing shared locking
You can see for yourself how shared locking works by running two instances of the program as follows:

1. Bring up an MS-DOS Prompt window, change to the directory where the SHAREDLOCK.EXE file is located, and type:

SHAREDLOCK
2. Before you press Enter, bring up another MS-DOS Prompt window, change to the same directory, and type

SHAREDLOCK
3. Now press Enterin each window in quick succession.

The two instances with the shared lock cooperate and work together, taking turns sequentially while the other one sleeps.
4. Now try running the EXLOCKEXAM exclusive locking example with the -switch, while one or more instances of the SHAREDLOCK

program are running.

The EXLOCKEXAM program will wait until all instances of the SHAREDLOCK program have completed before it can access the
resource.

Programming examples

176

Building a graphical user interface
The VISAAPIDemo example incorporates a number of TekVISA operations and illlustrates their use in a C++ program with a graphical user
interface.

Figure 7: VISAAPIDemo graphical user interface

When the viGetAttribute/viSetAttribute... button is pressed, the following dialog box appears:

When the enable I/O completion button is pressed, the following confirmation box appears:

The source code for this example can be found on your CD. The following figure illlustrates the control toolbar and various windows used
in building this example in Visual C++.

Programming examples

TekVISA Programmer Manual 177

Figure 8: C++ Controls toolbar and form, code, and properties windows

Programming examples

178

Appendix A: VISA data type assignments
Tables A1 and A2 give the type assignments for ANSI C and Visual Basic for each generic VISA data type. Although ANSI C types can be
defined in a header file, Visual Basic types cannot.

Table A1 lists those types that are both used and exported by direct users of VISA (such as instrument drivers). Table A2 lists types that
may be used but not exported by such users. For example, end-users would see the types specified in A1 exported by a VXI Plug&Play
instrument driver; however, end users would not see the types specified in Table A2.

Thus, if you are writing a program using the VISA API, you will see the data types in both tables. However, if you are writing a program
using a VXI Plug&Play instrument driver API, you will only see the data types in Table A1.

Figure A1 shows the instrument drivers that your program can use.

Figure 9: A1-Your program can use the instrument driver API or VISA API

Table 256: A1-Type assignments for VISA and instrument driver APIs

VISA data type C / Visual basic bindings Description
ViUInt32 unsigned long

Long

An array of 32-bit unsigned integers.

Table continued…

Appendix A: VISA data type assignments

TekVISA Programmer Manual 179

VISA data type C / Visual basic bindings Description
ViPUInt32 ViUInt32*

N/A

The location of an array of 32-bit unsigned integers.

ViAUInt32 ViUInt32[]

N/A

An array of 32-bit unsigned integers.

ViInt32 signed long

Long

A 32-bit signed integers.

ViPInt32 ViInt32*

N/A

The location of an array of 32-bit signed integers.

ViAInt32 ViInt32[]

N/A

An array of 32-bit signed integers.

ViUInt16 unsigned short

Integer

A 16-bit unsigned integer.

ViPUInt16 ViUInt16*

N/A

The location of an array of 16-bit unsigned integer.

ViAUInt16 ViUInt16[]

N/A

An array of 16-bit unsigned integers.

ViInt16 signed short

Integer

A 16-bit signed integer.

ViPInt16 ViInt16*

N/A

The location of an array of 16-bit signed integer.

ViAInt16 ViInt16[]

N/A

An array of 16-bit signed integers.

ViUInt8 unsigned char

Integer/Byte

An 8-bit unsigned integers.

ViPUInt8 ViUInt8*

N/A

The location of an array of 8-bit unsigned integers.

ViAUInt8 ViUInt8[]

N/A

An array of 8-bit unsigned integers.

Table continued…

Appendix A: VISA data type assignments

180

VISA data type C / Visual basic bindings Description
ViInt8 signed char

Integer/Byte

An array of 8-bit signed integers.

ViPInt8 ViInt8*

N/A

The location of an array of 8-bit signed integer.

ViAInt8 ViInt8[]

N/A

An array of 8-bit signed integers.

ViAddr void*

Long

A type that references another data type, in cases where the other data
type may vary depending on a particular context.

ViPAddr ViAddr*

N/A

The location of a ViAddr.

ViAAddr ViAddr[]

N/A

An array of type ViAddr.

ViChar char

Integer/Byte

An array of 8-bit integers representing an ASCII character.

ViPChar ViChar*

N/A

The location of a ViChar.

ViAChar ViChar[]

N/A

An array of type ViChar.

ViByte unsigned char

Integer/Byte

An array 8-bit unsigned integers representing an extended ASCII character.

ViPByte ViByte*

N/A

The location of a ViByte.

ViAByte ViByte[]

N/A

An array of type ViByte.

ViBoolean ViUInt16

Integer

A type for which there are two complementary values:

• VI_TRUE
• VI_FALSE

ViPBoolean ViBoolean*

N/A

The location of a ViBoolean.

Table continued…

Appendix A: VISA data type assignments

TekVISA Programmer Manual 181

VISA data type C / Visual basic bindings Description
ViABoolean ViBoolean[]

N/A

An array of type ViBoolean.

ViReal32 float

Single

A 32-bit single-precision value.

ViPReal32 ViReal32*

N/A

The location of a 32-bit single-precision value.

ViAReal32 ViReal32[]

N/A

An array of 32-bit single-precision values.

ViReal64 double

Double

A 64-bit double-precision value.

ViPReal64 ViReal64*

N/A

The location of a 64-bit double-precision value.

ViAReal64 ViReal64[]

N/A

An array of 64-bit double-precision values.

ViBuf ViPByte

String

The location of a block of data.

ViPBuf ViPByte

String

The location to store a block of data.

ViABuf ViBuf[]

N/A

An array of type ViBuf.

ViString ViPChar

String

The location of a NULL-terminated ASCII string.

ViPString ViPChar

String

The location to store a NULL-terminated ASCII string.

ViAString ViString[]

N/A

An array of type ViString.

ViRsrc ViString

String

A ViString type that is further restricted to adhere to the addressing
grammar for resources as described in Table 2-63.

Table continued…

Appendix A: VISA data type assignments

182

VISA data type C / Visual basic bindings Description
ViPRsrc ViString

String

The location to store a ViRsrc.

ViARsrc ViRsrc[]

N/A

An array of type ViRsrc.

ViStatus ViInt32

Long

A defined type that contains values corresponding to VISA-defined
Completion and Error termination codes.

ViPStatus ViStatus*

N/A

The location of a ViStatus.

ViAStatus ViStatus[]

N/A

An array of type ViStatus.

ViVersion ViUInt32

Long

A defined type that contains a reference to all information necessary for the
architect to represent the current version of a resource.

ViPVersion ViVersion*

N/A

The location of a ViVersion.

ViAVersion ViVersion[]

N/A

An array of type ViVersion.

ViObject ViUInt32

Long

The most fundamental VISA data type. It contains attributes and can be
closed when no longer needed.

ViPObject ViObject*

N/A

The location of a ViObject.

ViAObject ViObject[]

N/A

An array of type ViObject.

ViSession ViObject

Long

A defined type that contains a reference to all information necessary for the
architect to manage a communication channel with a resource.

ViPSession ViSession*

N/A

The location of a ViSession.

ViASession ViSession[]

N/A

An array of type ViSession.

Table continued…

Appendix A: VISA data type assignments

TekVISA Programmer Manual 183

VISA data type C / Visual basic bindings Description
ViAttr ViUInt32

Long

A type that uniquely identifies an attribute.

ViConstString const ViChar*

String

A ViString type that is guaranteed to not be modified by any driver.

Table 257: A2-Type assignments for VISA APIs only

VISA data type C / Visual basic bindings Description
ViAccessMode ViUInt32

Long

A defined type that specifies the different mechanisms that
control access to a resource.

ViPAccessMode ViAccessMode*

N/A

The location of a ViAccessMode.

ViBusAddress ViUInt32

Long

A type that represents the system dependent physical
address.

ViPBusAddress ViBusAddress*

N/A

The location of a ViBusAddress.

ViBusSize ViUInt32

Long

A type that represents the system dependent physical address
size.

ViAttrState ViUInt32

Long

A value unique to the individual type of an attribute.

ViPAttrState void*

Any

The location of a ViAttrState.

ViVAList va_list

Any

The location of a list of a variable number of parameters of
differing types.

ViEventType ViUInt32

Long

A defined type that uniquely identifies the type of an event.

ViPEventType ViEventType*

N/A

The location of a ViEventType.

ViAEventType ViEventType*

N/A

An array of type ViEventType.

Table continued…

Appendix A: VISA data type assignments

184

VISA data type C / Visual basic bindings Description
ViPAttr ViAttr*

N/A

The location of a ViAttr.

ViAAttr ViAttr*

N/A

An array of type ViAttr.

ViEventFilter ViUInt32

Long

A defined type that specifies filtering masks or other
information unique to an event.

ViFindList ViObject

Long

A defined type that contains a reference to all resources found
during a search operation.

ViPFindList ViFindList*

N/A

The location of a

ViFindList.

ViEvent ViObject

Long

A defined type that encapsulates the information necessary to
process an event.

ViPEvent ViEvent*

N/A

The location of a ViEvent.

ViKeyId ViString

String

A defined type that contains a reference to all information
necessary for the architect to manage the association of a
thread or process and session with a lock on a resource.

ViPKeyId ViPString

String

The location of a ViKeyId.

ViJobId ViUInt32

Long

A defined type that contains a reference to all information
necessary for the architect to encapsulate the information
necessary for a posted operation request.

ViPJobId ViJobId*

N/A

The location of a ViJobId.

ViHndlr ViStatus (*)

(ViSession, ViEventType, ViEvent,
ViAddr)

N/A

A value representing an entry point to an operation for use as
a callback.

Appendix A: VISA data type assignments

TekVISA Programmer Manual 185

Appendix B: Completion and error codes
The following Tektronix VISA completion and error codes are presented in alphabetical order within category.

Table 258: B1-Completion codes

Code Description
VI_SUCCESS_DEV_NPRESENT The session opened successfully, but the device at the specified address is not

responding.
VI_SUCCESS_EVENT_EN The specified event is already enabled for at least one of the specified mechanisms.
VI_SUCCESS_EVENT_DIS The specified event is already disabled for at least one of the specified mechanisms.
VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.
VI_SUCCESS_NCHAIN Event handled successfully. Do not invoke any other handlers on this session for this

event.
VI_SUCCESS_NESTED_EXCLUSIVE The specified access mode is successfully acquired, and this session has nested

exclusive locks.
VI_SUCCESS_NESTED_SHARED The specified access mode is successfully acquired, and this session has nested shared

locks.
VI_SUCCESS_QUEUE_EMPTY The operation completed successfully, but queue was empty.
VI_SUCCESS_QUEUE_NEMPTY Wait terminated successfully on receipt of an event notification. There is still at least one

more event occurrence of the type specified by inEventType available for this session.
VI_SUCCESS_SYNC Read or write operation performed synchronously.
VI_SUCCESS_TERM_CHAR The specified termination character was read.
VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or could not be loaded; using VISA-

specified defaults instead.
VI_WARN_NSUP_ATTR_STATE Although the specified attribute state is valid, it is not supported by this implementation.
VI_WARN_NSUP_BUF The specified buffer is not supported.
VI_WARN_NULL_OBJECT The specified object reference is uninitialized.

This message is returned if the value VI_NULL is passed to it.

VI_WARN_UNKNOWN_STATUS The status code passed to the operation could not be interpreted.

Table 259: B2-error codes

Code Description
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because of insufficient system

resources.
VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.
VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was not read from the

hardware before the next character arrived.
VI_ERROR_ASRL_PARITY A parity error occurred during transfer.
VI_ERROR_ATTR_READONLY The specified attribute is read-only.
VI_ERROR_BERR Bus error occurred during transfer.
Table continued…

Appendix B: Completion and error codes

186

Code Description
VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data structures corresponding to this

session or object reference.
VI_ERROR_HNDLR_NINSTALLED If no handler is installed for the specified event type, the request to enable the

callback mechanism for the event type returns this error code. The session cannot be
enabled for the VI_HNDLR mode of the callback mechanism.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.
VI_ERROR_INV_ACCESS_KEY The requestedKey value passed in is not a valid access key to the specified

resource.
VI_ERROR_INV_ACC_MODE Invalid access mode.
VI_ERROR_INV_CONTEXT Specified event context is invalid.
VI_ERROR_INV_DEGREE Specified degree is invalid.
VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_INV_EXPR Invalid expression specified for search.
VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.
VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user context value (or both) does not

match any installed handler.
VI_ERROR_INV_JOB_ID Specified job identifier is invalid.

This message is returned If the operation associated with the specified jobId has
already completed.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this resource.
VI_ERROR_INV_MASK The system cannot set the buffer for the given mask.
VI_ERROR_INV_MECH Invalid mechanism specified.
VI_ERROR_INV_OBJECTVI_ERROR_IN
V_SESSION

The given session or object reference is invalid (both are the same value).

VI_ERROR_INV_PROT The protocol specified is invalid.
VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.
VI_ERROR_INV_SETUP Some implementation-specific configuration file is corrupt or does not exist.
VI_ERROR_IO An unknown I/O error occurred during transfer.
VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located or loaded.
VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.
VI_ERROR_NCIC The interface associated with the given vi is not currently the controller in charge.
VI_ERROR_NENABLED The session must be enabled for events of the specified type in order to receive

them.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC are deasserted).
VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced session, event, or find list.
VI_ERROR_NSUP_ATTR_STATE VI_ERROR_NSUP_ATTR_ STATE
VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.
VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during transfer.
Table continued…

Appendix B: Completion and error codes

TekVISA Programmer Manual 187

Code Description
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.
VI_ERROR_RAW_RD_ PROT_VIOL Violation of raw read protocol occurred during transfer.
VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently access it.
VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because the resource is already locked

with a lock type incompatible with the lock requested
VI_ERROR_RSRC_NFOUND There are no more matches.
VI_ERROR_SESN_NLOCKED The current session did not have any lock on the resource.
VI_ERROR_SRQ_NOCCURRED Service request has not been received for the session.
VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.
VI_ERROR_TMO Timeout expired before write operation completed.

Appendix B: Completion and error codes

188

Glossary
The following are some specialized terms used within this document.

Address
A string (or other language construct) that uniquely locates and identifies a resource. VISA defines an ASCII-based grammar that
associates strings with particular physical devices or interfaces and VISA resources.

ADE
Application Development Environment

API
Application Programmers Interface. The direct interface that an end user sees when creating an application. The VISA API consists of the
sum of all of the operations, attributes, and events of each of the VISA Resource Classes.

Attribute
A value within a resource that reflects a characteristic of the operational state of a resource.

Bus error
An error that signals failed access to an address. Bus errors occur with low-level accesses to memory and usually involve hardware with
bus mapping capabilities. For example, non-existent memory, a non-existent register, or an incorrect device access can cause a bus error.

Communication channel
The same as Session. A communication path between a software element and a resource. Every communication channel in VISA is
unique.

Controller
A device that can control another devices or is in the process of performing an operation on another device.

Device
An entity that receives commands from a controller. A device can be an instrument, a computer (acting in a non--controller role), or a
peripheral (such as a plotter or printer). In VISA, the concept of a device is generally the logical association of several VISA resources.

GPIB (General Purpose Interface Bus)
An interconnection bus and protocol that allows you to connect multiple instruments in a network under the control of a controller. Also
known as IEEE 488 bus. It transfers data with eight parallel data lines, five control lines, and three handshake lines.

Instrument
A device that accepts some form of stimulus to perform a designated task, test, or measurement function. Two common forms of stimuli
are message passing and register reads and writes. Other forms include triggering or varying forms of asynchronous control.

Interface
A generic term that applies to the connection between devices and controllers. It includes the communication media and the device/
controller hardware necessary for cross-communication.

Glossary

TekVISA Programmer Manual 189

Instrument driver
Library of functions for controlling a specific instrument

IVI
Interchangeable Virtual Instrument

LabVIEW
Graphical programming ADE for Windows, Windows NT, and Sun operating systems

LabWindows/CVI
C-based ADE for the Windows and Sun operating systems

LLB
LabVIEW VI library

NI-488
National Instruments GPIB interface software

NI-VXI
National Instruments VXIbus interface software

Operation
An action defined by a resource that can be performed on a resource.

Oscilloscope
An instrument for making a graph of two factors. These are typically voltage versus time.

PnP
VXIplug&play Instrument Drivers

Process
An operating system component that shares a system’s resources. A multi-process system is a computer system that allows multiple
programs to run simultaneously, each in a separate process environment. A single-process system is a computer system that allows only a
single program to run at a given point in time.

Register
An address location that either contains a value that is a function of the state of hardware or can be written into to cause hardware to
perform a particular action or to enter a particular state. In other words, an address location that controls and/or monitors hardware.

Resource class
The definition for how to create a particular resource. In general, this is synonymous with the connotation of the word class in
object--oriented architectures. For VISA Instrument Control Resource Classes, this refers to the definition for how to create a resource that
controls a particular capability of a device.

Glossary

190

Resource or resource instance
In general, this term is synonymous with the connotation of the word object in object-oriented architectures. For VISA, resource more
specifically refers to a particular implementation (or instance in object-oriented terms) of a resource class. In VISA, every defined software
module is a resource.

Session
The same as communication channel. A communication path between a software element and a resource. Every communication channel
in VISA is unique.

SRQ
IEEE 488 Service Request. This is an asynchronous request from a remote GPIB device that requires service. A service request is
essentially an interrupt from a remote device. For GPIB, this amounts to asserting the SRQ line on the GPIB.

Status byte
A byte of information returned from a remote device that shows the current state and status of the device. If the device follows IEEE 488
conventions, bit 6 of the status byte indicates if the device is currently requesting service.

TVC
TekVISA Control

Template function
Instrument driver subsystem function common to the majority of VXIplug& play instrument drivers.

Top-level example
A high-level test-oriented instrument driver function. It is typically developed from the instrument driver subsystem functions.

USB
Universal Serial Bus

Virtual instrument
A name given to the grouping of software modules (in this case, VISA resources with any associated or required hardware) to give the
functionality of a traditional stand-alone instrument. Within VISA, a virtual instrument is the logical grouping of any of the VISA resources.
The VISA Instrument Control Resources Organizer serves as a means to group any number of any type of VISA instrument control
resources within a VISA system.

VI
LabVIEW program or Virtual Instrument

Virtual GPIB
A special type of GPIB resource that creates a software connection between the embedded instrument software and the Windows software
on a Tektronix Windows-based oscilloscope, without the need for any GPIB controller hardware or cables.

VISA
Virtual Instrument Software Architecture. The architecture consists of two main VISA components: the VISA Resource Manager and the
VISA Instrument Control Resources.

Glossary

TekVISA Programmer Manual 191

VISA instrument control resources
This is the name given to the part of VISA that defines all of the device-specific resource classes. VISA Instrument Control Resources
encompass all defined device and interface capabilities for direct, low-level instrument control.

VISA resource manager
This is the name given to the part of VISA that manages resources. This management includes support for opening, closing, and finding
resources; setting attributes, retrieving attributes, and generating events on resources; and so on.

VISA resource template
This is the name given to the part of VISA that defines the basic constraints and interface definition for the creation and use of a VISA
resource. All VISA resources must derive their interface from the definition of the VISA Resource Template.

Glossary

192

	Contents
	Preface
	Who should read this manual
	About this manual
	Conventions
	Related manuals and information

	Getting started
	Product description
	Terminology
	What you need to get started
	TekVISA installation

	Operations summary
	Operations
	viAssertTrigger (vi, protocol)
	viBufRead (vi, buf, count, retCount)
	viBufWrite (vi, buf, count, retCount)
	viClear (vi)
	viClose (vi)
	viDisableEvent (vi, eventType, mechanism)
	viDiscardEvents (vi, eventType, mechanism)
	viEnableEvent (vi, eventType, mechanism, context)
	viEventHandler (vi, eventType, context, userHandle)
	viFindNext (findList, instrDesc)
	viFindRsrc (sesn, expr, findList, retCount, instrDesc)
	viFlush (vi, mask)
	viGetAttribute (vi, attribute, attrState)
	viGpibCommand (vi, buf, count, retCount)
	viInstallHandler (vi, eventType, handler, userHandle)
	viLock (vi, lockType, timeout, requestedKey, accessKey)
	viOpen (sesn, rsrcName, accessMode, timeout, vi)
	viOpenDefaultRM (sesn)
	viParseRsrc (sesn, rsrcName, intfType, intfNum)
	viParseRsrcEx (sesn, rsrcName, intfType, intfNum, rsrcClass, unaliasedExpandedRsrcName, aliasIfExists)
	viPrintf (vi, writeFmt, <arg1, arg2, ...>)
	viQueryf (vi, writeFmt, readFmt, <arg1, arg2,...>)
	viRead (vi, buf, count, retCount)
	viReadAsync (vi, buf, count, jobId)
	viReadSTB (vi, status)
	viReadToFile (vi, fileName, count, retCount)
	viScanf (vi, readFmt, <arg1, arg2,...>)
	viSetAttribute (vi, attribute, attrState)
	viSetBuf (vi, mask, size)
	viSPrintf (vi, buf, writeFmt, <arg1, arg2,...>)
	viSScanf (vi, buf, readFmt, <arg1, arg2,...>)
	viStatusDesc (vi, status, desc)
	viTerminate (vi, degree, jobId)
	viUninstallHandler (vi, eventType, handler, userHandle)
	viUnlock (vi)
	viUsbControlIn (vi, bmRequestType, bRequest, wValue, wIndex, wLength, buffer, retCount)
	viUsbControlOut (vi, bmRequestType, bRequest, wValue, wIndex, wLength, buffer)
	viVPrintf (vi, writeFmt, params)
	viVQueryf (vi, writeFmt, readFmt, params)
	viVScanf (vi, readFmt, params)
	viVSPrintf (vi, buf, writeFmt, params)
	viVSScanf (vi, buf, readFmt, params)
	viWaitOnEvent (vi, inEventType, timeout, outEventType, outContext)
	viWrite(vi, buf, count, retCount)
	viWriteAsync (vi, buf, count, jobId)
	viWriteFromFile (vi, fileName, count, retCount)
	viPxiReserveTriggers(vi, cnt, trigBuses, trigLines, failureIndex)

	Attributes summary
	Attributes
	VI_ATTR_ASRL_AVAIL_NUM
	VI_ATTR_ASRL_BAUD
	VI_ATTR_ASRL_CTS_STATE
	VI_ATTR_ASRL_DATA_BITS
	VI_ATTR_ASRL_DCD_STATE
	VI_ATTR_ASRL_DSR_STATE
	VI_ATTR_ASRL_DTR_STATE
	VI_ATTR_ASRL_END_IN
	VI_ATTR_ASRL_END_OUT
	VI_ATTR_ASRL_FLOW_CNTRL
	VI_ATTR_ASRL_PARITY
	VI_ATTR_ASRL_REPLACE_CHAR
	VI_ATTR_ASRL_RI_STATE
	VI_ATTR_ASRL_RTS_STATE
	VI_ATTR_ASRL_STOP_BITS
	VI_ATTR_ASRL_XOFF_CHAR
	VI_ATTR_ASRL_XON_CHAR
	VI_ATTR_BUFFER
	VI_ATTR_EVENT_TYPE
	VI_ATTR_GPIB_PRIMARY_ADDR
	VI_ATTR_GPIB_READDR_EN
	VI_ATTR_GPIB_SECONDARY_ADDR
	VI_ATTR_GPIB_UNADDR_EN
	VI_ATTR_INTF_INST_NAME
	VI_ATTR_INTF_NUM
	VI_ATTR_INTF_TYPE
	VI_ATTR_IO_PROT
	VI_ATTR_JOB_ID
	VI_ATTR_MAX_QUEUE_LENGTH
	VI_ATTR_OPER_NAME
	VI_ATTR_RD_BUF_OPER_MODE
	VI_ATTR_RET_COUNT
	VI_ATTR_RM_SESSION
	VI_ATTR_RSRC_IMPL_VERSION
	VI_ATTR_RSRC_LOCK_STATE
	VI_ATTR_RSRC_MANF_ID
	VI_ATTR_RSRC_MANF_NAME
	VI_ATTR_RSRC_NAME
	VI_ATTR_RSRC_SPEC_VERSION
	VI_ATTR_SEND_END_EN
	VI_ATTR_STATUS
	VI_ATTR_SUPPRESS_END_EN
	VI_ATTR_TCPIP_ADDR
	VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB
	VI_ATTR_TCPIP_HISLIP_OVERLAP_EN
	VI_ATTR_TCPIP_HISLIP_VERSION
	VI_ATTR_TCPIP_HOSTNAME
	VI_ATTR_TCPIP_IS_HISLIP
	VI_ATTR_TCPIP_KEEPALIVE
	VI_ATTR_TCPIP_NODELAY
	VI_ATTR_TCPIP_PORT
	VI_ATTR_TERMCHAR
	VI_ATTR_TERMCHAR_EN
	VI_ATTR_TMO_VALUE
	VI_ATTR_TRIG_ID
	VI_ATTR_TCPIP_IS_HISLIP
	VI_ATTR_USB_INTFC_NUM
	VI_ATTR_USB_MAX_INTR_SIZE
	VI_ATTR_USB_PROTOCOL
	VI_ATTR_USB_RECV_INTR_DATA
	VI_ATTR_USB_RECV_INTR_SIZE
	VI_ATTR_USB_SERIAL_NUM
	VI_ATTR_USER_DATA
	VI_ATTR_WR_BUF_OPER_MODE

	Events
	VI_EVENT_EXCEPTION
	VI_EVENT_IO_COMPLETION
	VI_EVENT_SERVICE_REQ

	Programming examples
	Introduction
	Compiling and linking examples
	Opening and closing sessions
	SIMPLE.CPP example
	Finding resources
	SIMPLEFINDRSRC.CPP example
	Using attribute matching
	FINDRSRCATTRMATCH.CPP example

	Setting and retrieving attributes
	ATTRACCESS.CPP example

	Basic Input/Output
	Reading and Writing Data
	Synchronous Read/Write
	Extract from SIMPLE.CPP Example
	RWEXAM.CPP Example
	Asynchronous Read/Write
	Status/Service request

	Reading and writing formatted data
	FORMATIO.CPP example
	Resizing the formatted I/O buffers
	BUFFERIO.CPP Example
	Flushing the formatted I/O buffer
	Buffered I/O operations
	Variable list operations
	Controlling the serial I/O buffers

	Handling events
	SRQWAIT.CPP example
	Callback mechanism
	SRQ.CPP example
	Exception handling
	Generating an Error condition on asynchronous operations

	Locking and unlocking resources
	Locking types and access privileges
	EXLOCKEXAM.CPP example
	Testing exclusive locking
	Lock sharing
	Acquiring an exclusive lock while owning a shared lock
	Nested locks
	SHAREDLOCK.CPP example
	Testing shared locking

	Building a graphical user interface

	Appendix A: VISA data type assignments
	Appendix B: Completion and error codes
	Glossary

