Counter/Timer
Programming Guide

KEITHLEY

Information in this document is subject to change without notice. The software
described is this document is furnished under a license agreement. The software may
be used or copied only in accordance with the terms of the agreement.

SCIENTIFIC SOFTWARE TOOLS, INC. SHALL NOT BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO
THE USE OF THIS PRODUCT. THIS PRODUCT ISNOT DESIGNED WITH
COMPONENTSOF A LEVEL OF RELIABILITY SUITABLE FORUSE IN LIFE
SUPPORT OR CRITICAL APPLICATIONS.

This document may not, in whole or in part, be copied, photocopied, reproduced,
tranglated or reduced to any electronic medium or machine readable form without
prior written consent from Scientific Software Tools, Inc.

DriverLINX Counter/Timer Programming Guide
O Copyright 1997-2001, Scientific Software Toals, Inc.
All rights reserved.

SST 08-0101-1

LabOBJX, DriverLINX, and SSTNET are registered trademarks and
DriverLINX/VB isatrademark of Scientific Software Tools, Inc.

Microsoft and Windows are registered trademarks and Visual C++ and Visual Basic
are trademarks of Microsoft Corporation.

Borland is aregistered trademark and Borland C++ is atrademark of Borland
International, Inc.

All Keithley product names are trademarks or registered trademarks of Keithley
Instruments, Inc.

All other brand and product names are trademarks or registered trademarks of their
respective companies.

Contents

Preface 7
Software License and Software Disclaimer of Warrantyccccveevveevieeeevenesese s 7

ADOUL DIVEILINX .ttt sttt sttt nas 9

About This Programming GUITE.ccceeeriieeerieeieere s s stes e seesie e et sse e eseesre e seesrennes 9
Conventions Used iN ThIS ManUal ..o e 11

Why Use a Counter/Timer Device Driver 13
USING DireCt HardWare 11Ocoouiiiieieieeee ettt e 13
AdVantages Of DEVICE DIIVEIS......cciiiiiirieeeie ettt b e ene 13
Introducing DriverLINX 15
WY o Lo 10| B = I N RSP 15
DriverLINX Hardware MOGEL...........cooeirieie e 15
DIIVEILINX DIIVEL ..ttt sttt sttt sae st s eneeneens 15

LOGICAl DEBVICES ... ettt ettt sttt ettt sb e 15

LOQiCal SUDBSYSIEIMS ..ottt e 16

LOgical ChaNNELS ..o e e 16

DriverLINX Programming MOGE!cceeveieiinieie et nee s 16

oo Tor= I DIV o cH B I=s ot 1] (0] = RS 17

S VW] o [0TSR 17

(0702 1 010 o = ot TSR 18

(000010 {0l 101 = = oS 18

SUMMIBIY 1.ttt r b et R e st e e e e s r e R sa e er e s bt es s e e e nn e r e sr e erenaeennennens 18
Counter/Timers and DriverLINX 19
Counter/Timer Hardware DESCIIPLION.ccvieieeereceeseeseseste e seeeeseesees e sre e seeseeeenaeseeseens 19

INEEL B254 ... e e e e e bbb b et 19

KPCI-3140 Counter/Timer Chipccccceieieseseceeieeestes e se s esaese e sne e sneae e 20

F N 011 TSRS 20

DriverLINX Counter/Timer MOUEL...........cviiiiirireireneee e 21
DriverLINX Task MOELccooiiiiiiieieeee e s 26
Hardware SNaINGcocceeereiie e e 26

CrEaling TASKS .. .cueevireeeeterieeet sttt b e e bbb n s 26

Monitoring and StOPPING TaSKS.....c.veererierieerierieese sttt 27

DIVErLINX EVENES ...ttt sttt e sne e 27

DrivErLINX OPEIaliONS.......ccveueitereeuirrereeiesteseeie sttt st sbe et sre et b e sre e e 28

DIIVEILINX MOES ...ttt sttt st s st st 29

Individual and Group TaSKS.......c.ccuerrerieresierieesieseesesesresseeeeseessessessessessesssesssssessessens 29

Mapping Logical Channelsto Counter/Timer Hardware Channels..........c..ccocveveveveieienennee. 29

DT To ez L@ N o F= 0 11T 30
Mapping Logical Channelsto Digital Hardware Chann€ls..........cccccvvvevievenevieceseeceese e, 31
Properties of Logical Channels............coeiieiiininneneeese e 31

Combining or Splitting Logical Channels ... 31

DriverLINX Counter/Timer User’s Guide Contents « 3

IMPIEMENEAiON NOLES.......eiviieeceeceeeece e s reens 33

Programming Counter/Timers with DriverLINX 35
DriverLINX Counter/Timer OPEratioNS.........ccoeererieirerietseseee st seee sttt 35
DriverLINX Tasksfor All SUDSYSIEMS........ccoeirireineneere e 36
DriverLINX Tasks for Counter/Timer SUDSYStEM........cccccivvvrereseneseeeereeseeseseeeas 36
[l 0 (01N a1 I 1K= S S 37
BaCKGroUNd TasKS........eiieieieeriesiesiesiesteeeesteseesee e saeesae s e e stesressesseesaessenseseessessesssnnes 37
Lo T 1= S T TSR 38
DriverLINX Tasksfor Digital SUDSYSEEMS.........cccveivevereie i 38
Using DriverLINX'S SErviCe REQUESEScccviiiieieeei ittt e e e e e e e e e e e e e s s 39
Properties Common to All Service REQUESESeiviiiiiiiiiieeiiieiice e 39
Modes and Operations for COUNEI/TIMEIS.......coiiuiiiiie e 40
Using Events to Control Service REQUESEScccoiiiiiiiiiiiiiiiiieeee e 41
Events for the COUNEIr/TIMENcoiiiiiiiiee e 41
Specifying Counter/Timer Channels in a Service Requestcccccvveviiieeeeiienneeenn. 42
Specifying Data Buffers in a Service REQUESEc.uvviieeiiiiiiieiee e 43
INterfacing to DIVEILINX ...t e e e e e e e e e e e e e e e e e e e saaannne 43......
Opening and Closing a DriverLINX DEeVICE DIIVEN..........cccouiiiiiicccciiiiitieeere e e e 44
Selecting a DrivErLINX DEVICE DIIVEL.......uuuiiiiiiiiiiiieiieeee e e e e s ses s ereeeeeaeaeae e e e s e s s annnnnenes 46
Displaying the Edit Service RequUESt DialOguuviuiiiiiiiiiiieee e e e e e e a7
Reporting @ DIVEILINX EFTOT....uuuuiiiiiiiiieiiecee et e e e e e e e e e e e e e s e e s e e s s nannnnnnnee 48
StopPING A DIVEILINX TASK......eiiiiiiiiiiiiiie ettt e e e s eee e 49
INILIAlIZING thE DEVICEeeiiiiiiiiiie et 50..
Initializing a Counter/TIiMer SUDSYSIEM.........iiiiiiiiiiiii et 51
Using Messages and EVENEScoooiiiiiiiiiii e 2, 5
Events for FOreground TaSKSuuiiiiiiiiiii ettt 53
Events for Background TaSKScuiiiiiiiiiiiiaiiiiiiie et 53
(OL0 18] 0] (=] g @ 111101V | S PP PPPT 55.
Status Polling @ COUNEITIMET ...ccciiiiiie e e e e e ereeee e e Burrrrnen 5
Configuring a Counter/Timer ChannEl.............uuuiiiiiiiiiiiiiccie e 57
Converting Between Counts and TIiMEooooiii oot e e e e e e e e e s eeeeees 58
Using Background TASKSccccuuiiiiiiiiiiiiiieeieciee e e e e s e e e raeaaeeeeaeanen s 60..........
Using a Counter/Timer to Generate Clock MeSSagEeSccceeeeeveiiiiiiiciciiiniiniieeeeeee e 60
Storing the Counter/Timer Value at Each Interrupt..........ccccceeviiiiiiieeiiniieeee e, 61
Controlling GroUP TaASKSueiiiieiiiiiei e 63.......
SEIECE ChANNEIS. ... e a e e e e e e e e e 64
POlIEd MOTE GIOUPSeeeeeeeeee ittt ettt ettt e et e e e st e e s annnneeeeas 65
INEEITUPE MOOE GIOUPS ...eeeieiiiiiiiee e ettt ettt e e st e e e et e e e s e enbbneeeeeeaa 67
USING Digital 1/O TASKSevieiieeiiiiieiei ettt e 68.....
Reading or Writing a Single Digital Value............ccccoiiiiiiiiiiiicceecee e 68
Reading or Writing Specific Digital BitS...........cccooviiiiiiiiiciiiiieeeee e 72
Rapidly Transferring a Block of Digital Data...........cccueeeeviieieeeeeeeiiiic e 75
Using Task-Oriented Functions 79
DriverLINX’s Task-Oriented FUNCHONScociiiiiiiiiccie e 79
EVENT COUNTING .ttt e e et e e e e e e e e e e s e e s s e e e nnbab e e beeeeeeeaaeas 79..
Starting an EVENE COUNTETuviiiiiiieiiec et e e e e e e e e e eneees 79
Specifying the Rate Event for Event Countingccccvvvviiiiiiieeieeeeee e 80
Hardware Setup for EVENt COUNLINGuuuiiriiiiiiieeeeee e r e e e e e e e e e e e e e 84
Event Counting USING C/CH+ ...t e e e e s e e e e eee e 84
Event Counting UsiNg Visual BASIC.......cccvvviviieiiiiiii it e e e 85
Frequency MeEaSUIEMENToiii it e e s e e et e e e e aaan e eeeees 85
Starting a FrequenCy COUNLEToiiiiiiiiiie et 86

4 « Contents

DriverLINX Counter/Timer User’s Guide

Specifying the Rate Event for Frequency Measurements.........ccocevvveeereeveereeneeneens 87

Hardware Setup for Frequency MeasUremMeNtccceeeeeereereereniesesesesesseeseeseeseens 89
Frequency Measurement USING CICHc.vciiieiinieiececeeeeee e e e eeneneens 90
Frequency Measurement Using Visual BaSiC.........cccoceveinenniinenneseeeseeseee 91

INtErVAl IMEASUIEIMENEeiiiiiteieeeiteiee ettt ettt sbe st se et et e beseesbesaesneeneeneas 92
Starting an INLErVal COUNLEYooeiirieieireieie s 92
Specifying the Rate Event for Interval Measurementscccooeveevineeeneneeneneenes 93
Hardware Setup for Interval MeasUremMents..........ccceereerereieneseese e 94

Interval Measurement USING C/CH ..ot 9

Interval Measurement Using Visual BaSiCcccceveveeirieeieeie s 95

Period and Pulse Width MEasUremMeNtccoeeeirerininieee e 96
Starting an Period or Pulse Width Measurement...........c.ccooveveeveeveniesesesesesesseeaens 96
Specifying the Rate Event for Period and Pulse Width Measurements..................... 97
Hardware Setup for Period and Pulse Width Measurements...........ccccceeveeevveveniennens 98

Period or Pulse Width Measurements USing C/C++ccvcveievevesienie e 99

Period or Pulse Width Measurement Using Visual BaSiC..........cccovveeeneniccnenienenn 100

PulSe and StrobDE GENEIAION.........c.eieiieie ettt e s sre e eeneans 101
Starting Pulse and Strobe GENErationc..cevereeerereeneneee s 101
Specifying the Rate Event for Pulses and Strobes..........coeoeveinnccnicics 102
Hardware Setup for Pulses and Strobes..........cocovieinineine e 104

Pulse and Strobe Generation USiNg C/CH ... 105

Pulse and Strobe Generation Using Visual BaSiC.......cccccvevvevevvseve s 106
FreqUENCY GENETBHIONcii e ceeeeesees ettt e e e s e e st esre e e ese e e esaeseesteseesaeerenneeneeneens 107
Starting FrequenCy GENENatiONcccveveeiererie e sese e eee s esee e st e e e enaeseees 107
Specifying the Rate Event for Frequency Generation..........ccccocevveeeveeeseeieeseeneennn, 107
Hardware Setup for Frequency GENerationcceceevveveereresesesesesseeseeseeseeseenns 110
Frequency Generation USING C/CH+occiviiieieiiieiseseese e 111
Frequency Generation Using Visual BaSiC.........ccocuvveinineinineineeeseee e 112
Hardware Reference 113
8254 Operating MOUES.......c.coiiieiiriirieieerte ettt bbbt se b b 113
Operating Mode DESCIIPLIONS.......cciiueiriirieieie sttt seenens 114
KPCI-3140 Operating MOUESccviueiieeeeeee st s se et eeeee e sre e sre e e aesaestesresneeneeneeesnens 116
Operating Mode DESCIPLIONS........civiieieeieeerieresrese et ee e e et se e enaeseees 116
AMO513 OPErating MOUES.......c.civeeeiiriereeit ettt ettt b e bbb 117
Operating Mode DESCIIPLIONS.......cciiveeeierieerie ettt 118
Glossary of Terms 127
Index 129

DriverLINX Counter/Timer User’s Guide Contents « 5

Preface

Software License and Software Disclaimer of Warranty

This is a legal document which is an agreement between you, the Licensee, and Scientific Software Tools, Inc. By opening this
sealed diskette package, Licensee agrees to become bound by the terms of this Agreement, which include the Software License and
Software Disclaimer of Warranty.

This Agreement constitutes the complete Agreement between Licensee and Scientific Software Tools, Inc. If Licensee does not
agree to the terms of this Agreement, do not open the diskette package. Promptly return the unopened diskette package and the other
items (including written materials, binders or other containers, and hardware, if any) that are part of this product to Scientific Software
Tools, Inc. for a full refund. No refunds will be given for products that have opened disk packages or missing components.

Licensing Agreement

Copyright. The software and documentation is owned by Scientific Software Tools, Inc. and is protected by both United States
copyright laws and international treaty provisions. Scientific Software Tools, Inc. authorizes the original purchaser only (Licensee) to
either (a) make one copy of the software solely for backup or archival purposes, or (b) transfer the software to a single hard disk only.
The written materials accompanying the software may not be duplicated or copied for any reason.

Trade Secret. Licensee understands and agrees that the software is the proprietary and confidential property of Scientific Software
Tools, Inc. and a valuable trade secret. Licensee agrees to use the software only for the intended use under this License, and shall not
disclose the software or its contents to any third party.

Copy Restrictions. The Licensee may not modify or translate the program or related documentation without the prior written
consent of Scientific Software Tools, Inc. All modifications, adaptations, and merged portions of the software constitute the software
licensed to the Licensee, and the terms and conditions of this agreement apply to same. Licensee may not distribute copies, including
electronic transfer of copies, of the modified, adapted or merged software or accompanying written materials to others. Licensee agrees
not to reverse engineer, decompile or disassemble any part of the software.

Unauthorized copying of the software, including software that has been modified, merged, or included with other software, or of the
written materials is expressly forbidden. Licensee may not rent, transfer or lease the software to any third parties. Licensee agrees to
take all reasonable steps to protect Scientific Software Tools’ software from theft, disclosure or use contrary to the terms of the License.

License. Scientific Software Tools, Inc. grants the Licensee only a non-exclusive right to use the serialized copy of the software on a
single terminal connected to a single computer. The Licensee may not network the software or use it on more than one computer or
computer terminal at the same time.

Term. This License is effective until terminated. This License will terminate automatically without notice from Scientific Software
Tools, Inc. if Licensee fails to comply with any term or condition of this License. The Licensee agrees upon such termination to return or
destroy the written materials and all copies of the software. The Licensee may terminate the agreement by returning or destroying the
program and documentation and all copies thereof.

DriverLINX Counter/Timer User’s Guide Preface « 7

Limited Warranty

Scientific Software Tools, Inc. warrants that the software will perform substantially in accordance with the written materials and that
the program disk, instructional manuals and reference materials are free from defects in materials and workmanship under normal use for
90 days from the date of receipt. All express or implied warranties of the software and related materials are limited to 90 days.

Except as specifically set forth herein, the software and accompanying written materials (including instructions for use) are provided
“as is” without warranty of any kind. Further, Scientific Software Tools, Inc. does not warrant, guarantee, or make any representations
regarding the use, or the results of the use, of the software or written materials in terms of correctness, accuracy, reliability, currentness,
or otherwise. The entire risk as to the results and performance of the software is assumed by Licensee and not by Scientific Software
Tools, Inc. or its distributors, agents or employees.

EXCEPT AS SET FORTH HEREIN, THERE ARE NO OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY ACCOMPANYING HARDWARE.

Remedy. Scientific Software Tools’ entire liability and the Licensee’s exclusive remedy shall be, at Scientific Software Tools’ option,
either (a) return of the price paid or (b) repair or replacement of the software or accompanying materials. In the event of a defect in
material or workmanship, the item may be returned within the warranty period to Scientific Software Tools for a replacement without
charge, provided the licensee previously sent in the limited warranty registration card to Scientific Software Tools, Inc., or can furnish
proof of the purchase of the program. This remedy is void if failure has resulted from accident, abuse, or misapplication. Any replacement
will be warranted for the remainder of the original warranty period.

NEITHER SCIENTIFIC SOFTWARE TOOLS, INC. NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION,
PRODUCTION, SALE OR DELIVERY OF THIS PRODUCT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL,
OR INCIDENTAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF THE USE OF OR THE INABILITY TO USE SUCH PRODUCT EVEN IF
SCIENTIFIC SOFTWARE TOOLS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, OR LIMITATIONS ON DURATION OF AN IMPLIED WARRANTY, THE ABOVE LIMITATIONS MAY NOT APPLY TO
LICENSEE.

This agreement is governed by the laws of the Commonwealth of Pennsylvania.

8 ¢ Preface DriverLINX Counter/Timer User’s Guide

About DriverLINX

Welcometo DriverLINXO for Microsoft] Windows[, the high-performance real -
time data-acquisition device drivers for Windows application development.

DriverLINX is alanguage- and hardware-independent application-programming
interface designed to support hardware manufacturers’ high-speed analog, digital,
and counter/timer data-acquisition boards in Windows. DriverLINX is a multi-user
and multitasking data-acquisition resource manager providing more than 100
services for foreground and background data acquisition tasks.

Included with your DriverLINX package are the following items:

e The DriverLINX DLLs and drivers supporting your data-acquisition
hardware

e Learn DriverLINX, an interactive learning and demonstration program
for DriverLINX that includes a Digital Storage Oscilloscope

e Source code for the sample programs

* The DriverLINX Application Programming Interface files for your
compiler

e DriverLINX On-line Help System
e DriverLINX 4.0 Ingtallation and Configuration Guide
e DriverLINX Technical Reference Manual

e Supplemental Documentation on DriverLINX and your data acquisition
hardware

About This Programming Guide

The purpose of this manual is to help you quickly learn to program DriverLINX for
counter/timer operations with your hardware.

* For help installing and configuring your hardware and DriverLINX,
please see the hardware manuals that accompanied your board and the
DriverLINX 4.0 Installation and Configuration Guide for your version
of Windows.

e For more information on the DriverLINX API, please see the on-line
DriverLINX Technical Reference Manual.

e For additional help programming your board, please examine the
source code examples on the Distribution Disks.

This manual is divided into the following chapters:

Why Use a Counter/Timer Device Driver

Brief discussion of why modern operating systems require device drivers.
Introducing DriverLINX

Presents a quick overview of DriverLINX's hardware and programming model.
Counter/Timers and DriverLINX

Describes how DriverLINX’s hardware model supports counter/timer boards.

DriverLINX Counter/Timer User’s Guide Preface « 9

Programming Counter/Timers with DriverLINX
Explains how to program counter/timer tasks.
Using Task-Oriented Functions

Describes counter/timer functions that DriverLINX defines with atask orientation
rather than a hardware orientation.

Hardware Reference

Describes Intel 8254, KPCI-3140 and Am9513 operating modes and how they map
onto the DriverLINX programming model.

10 « Preface DriverLINX Counter/Timer User’s Guide

Conventions Used in This Manual

The following notational conventions are used in this manual:
* Around bullet identifiesitemized lists (*).
e Numbered listsindicate a step-by-step procedure.

» DriverLINX Application Programming | nterface and Windows macro
and function names are set in bold when mentioned in the text.

» DriverLINX indicates the exported function name of the device driver
DLL while DriverLINX indicates the product as a whole.

e DriverLINX Application Programming Interface identifiers, menu
items, and Dialog Box names are italicized when mentioned in the text.

e [talicsare used for emphasis.

« Source code and data structure examples are displayed in Courier
typeface and bounded by a box with asingle line.

Code

* A box with adouble line bound tables of information.

Tables

Concept * Important concepts and notes are printed in the left margin.

DriverLINX Counter/Timer User’s Guide Preface « 11

Why Use a Counter/Timer Device
Driver

Using Direct Hardware I/O

Most counter/timer devices are simple devices to program. For years most

application developers wrote directly to the 1/0O hardware using the CPU’s I/O
instructions (inp and outp) or using Peek and Poke statements in Basic. This was
simple, fast, and efficient and required a minimal learning curve.

Under Windows 3.x, C/C++ developers could use these same techniques for most
ports despite Microsoft's strong recommendation against doing so. Visual Basic
programmers, however, found that Microsoft had removed all direct I/O statements
from the language, but they quickly discovered they could replace the missing
statements with calls to simple DLLs.

With the arrival of Windows NT, direct hardware I/O in user applications is not
physically possible. Hardware 1/0 in DOS and Win16 apps may appear to execute,
but the CPU never actually executes the I/O instructions. In Win32 apps hardware
I/O instructions generate a “privileged instruction exception” and terminate the
offending app.

To perform user-level /O in Windows NT and future versions of Windows 95, the
operating system requires that applications communicate with the hardware using a
device driver. Modern device drivers are effectively trusted operating system
extensions that have more privileges than ordinary user-mode applications, DLLS,
and services.

Advantages of Device Drivers

Using device drivers to control hardware offers an application in a modern
multitasking, multithreaded operating system several advantages and one major
disadvantage. The application advantages of the device driver model are

« hardware-independent access to boards belonging to a class of devices,

e resource sharing of a single physical device among multiple
applications and/or threads,

DriverLINX Counter/Timer User’s Guide Why Use a Counter/Timer Device Driver « 13

e resource arbitration when multiple device users contend for the same
hardware resources, and

e system security either at the logical level of authorized device users or
at the physical level of preventing misuse of adevice.

The main disadvantage of the device driver model is the extra overhead the system
reguires to communicate device requests between the application, the device driver,
and the hardware. For device requests, such asacquiring a million data samples
in onerequest, the overhead is negligible, but for acquiring one sample using a
million separ ate requests, the time penalty is significant. For this reason,
developers must often redesign the protocols and algorithms that worked well in a
single-tasking OS, such as DOS, for use in a multitasking system, such as Windows
NT.

14 « Why Use a Counter/Timer Device Driver DriverLINX Counter/Timer User’s Guide

Introducing DriverLINX

About DriverLINX

The DriverLINX Distribution Welcometo DriverLINX for Microsoft Windows. DriverLINX is alanguage and

Disks contain many sample hardware-independent, high-performance, real-time, data-acquisition device driver
programs for a variety of for 16 and 32-bit Windows 3.x, Windows 95 and Windows NT. DriverLINX
hardware devices. Many supports an abstract hardware model for generalized data-acquisition hardware that
samples will not work with includes analog and digital 1/0 as well as counter/timer functions.

counter/timer devices.

This chapter briefly surveysthe DriverLINX hardware and programming model. The
on-line DriverLINX Technical Reference Manual included with the DriverLINX
package is the complete, board-independent specification for the abstract
DriverLINX hardware model. Whether or not you are familiar with DriverLINX
programming, this guide will ease your learning curve by focusing on just the
counter/timer subsystem programming model.

DriverLINX Hardware Model

DriverLINX Driver

Each DriverLINX driver supports one or more models of adevice seriesina
manufacturer’s product line. You can control multiple products from different series
by opening several DriverLINX drivers. You can program each product using
different “Service Requests” for each overlapping data-acquisition task.

Logical Devices

A single DriverLINX driver can support multiple boards from its list of supported
models. During configuration, you assign each physical device a Logical Device
number that you use to identify a particular board to DriverLINX. At run time,
applications can determine the manufacturer, model name, I/O address, and hardware
resources of a Logical Device by consulting DriverLINX’s Logical Device

Descriptor.

DriverLINX Counter/Timer User’s Guide Introducing DriverLINX « 15

Logical Subsystems

DriverLINX treats all data-acquisition devices uniformly as abstract hardware
consisting of seven possible subsystems.

« DEVICE—the physical hardware considered as a whole.

* Al (Analog Input)—the A/D converters, multiplexers, and associated
hardware.

* AO (Analog Output)—the D/A converters and associated hardware.
» DI (Digital Input)—the digital input ports and associated hardware.
« DO (Digital Output)—the digital output ports and associated hardware.

e CT (Counter/Timer)—the counter/timer channels and associated
hardware.

DriverLINX’s Logical Device Descriptor contains properties specifying which
Logical Subsystems are available for a particular device. Counter/timer boards
always support thBEVICE andCT subsystems, and some boards support
additional subsystems, such@isandDO.

Logical Channels

The subsystems, excdpEVICE, consist of one or more data channels known as
Logical Channels. Usually a Logical Channel corresponds to one hardware channel,
but, for some boards, DriverLINX may use multiple Logical Channel numbers to
access a group of hardware channels using different data widths. DriverLINX
records the number of Logical Channels and their capabilities in the Logical Device
Descriptor.

DriverLINX Programming Model

Programming DriverLINX for data-acquisition tasks differs from the approach you
may have used previously. Most vendors’ data-acquisition packages consist of thick
documents describing hundreds of hardware-specific calls to configure and program
a data-acquisition board. DriverLINX, in contrast, uses a board-independent list of
properties to specify the parameters for a data-acquisition task.

All data-acquisition tasks in DriverLINX use the same, simple three-step protocol:
1. Decide how you want to acquire data.

2. Specify your task by setting the properties of an object or data structure
known as the Service Request.

3. Pass the Service Request to DriverLINX, which sets up the hardware
and acquires the data for you.

The power of the Service Request approach is that you use the same strueture for
data-acquisition tasks @my supported hardware. Once you understand how to
program one type of device, you can use that knowledge to program any other
supported device.

To notify an application of the progress or error conditions detected during a data-
acquisition task, DriverLINX sends the application a series of messages just as
Windows sends messages to an application’s message loop. This feature allows an

16 « Introducing DriverLINX

DriverLINX Counter/Timer User’s Guide

DriverLINX does not require
that applications reference or
use the LDD to program
data-acquisition tasks.

The on-line Driver LINX
Technical Reference Manual
defines the DriverLINX
Soecification for all data-
acquisition boards.

Using DriverLINX for a
specific board requires
learning just the supported
properties for the board.

application to overlap data processing with data acquisition and easily synchronize
the two activities.

Most data-acquisition drivers manage a hardware board exclusively for one
application. DriverLINX, however, manages the subsystems of a hardware board as
a shared resource that multiple applications or threads can share. If your hardware
board has the necessary features, DriverLINX supports running multiple,
independent tasks concurrently on one board.

Logical Device Descriptors

For writing hardware-independent applications, you may need to know the hardware
specifications of the board your program is controlling. DriverLINX makes this
information available to your program with another device-independent data
structure known as the Logical Device Descriptor (LDD). The LDD contains
information about number and types of data channels on the board, the allowed
operating modes and commands, and many other details. For more information, see
the on-line DriverLINX Technical Reference Manual.

Service Requests

The most important DriverLINX concept to understand is the Service Request. This
isthe object, data structure, or form that you use to specify all data-acquisition tasks.
Asmuch asispossible, DriverLINX treatsall data-acquisition tasks as similar
using the same concepts and propertiesto define each possible task.

The key to learning how to specify a Service Request isfirst learning the major
groups of a Service Request, and then learning the properties for each group.

A Service Request consists of four mgjor property groups:

* Request Group—specifies the target Logical Device and Logical
Subsystem of a task and the data-acquisition mode and operation to
perform.

« Events Group—specifies how DriverLINX should time or pace data
acquisition, when DriverLINX should start acquisition, and when it
should end.

« Sedect Group—specifies the Logical Channels to acquire and the
number and length of data buffers to acquire.

* Results Group—DriverLINX uses these properties to return result
codes and single data values.

You can fill out Service Requests either interactively usindethieService Request
Property page in DriverLINX or programmatically by assigning values to the
required properties in each group.

DriverLINX Counter/Timer User’s Guide

Introducing DriverLINX « 17

Edit Service Request E3

— Request
Device: Subsyztem: Mode; Operation:
Cancel |

IDeviceD j Il:ounten"timej I'I IStart 'I
™ Audit only Help... |

— Events Select »»
= Timing >> i Stark > i Stop sy
—mnd — = ' Channels
Rate ﬂ INnne j INnne j £ Buffers
£ Flags

C/C++ Interface

If you are using C/C++, the Service Request is a C data structure type definition.
Create an instance of the data structure, set al fields to zero, and then assign the
proper values to each needed property in the groups. After setting up the Service
Request, pass the address of the Service Request to DriverLINX for execution.
DriverLINX will report information about the task back to the application using
Windows messages.

Control Interface

If you are using the Visual Basic custom control (VBX) or ActiveX (OLE or OCX)
version of DriverLINX, the Service Request is an instance of the control object on
your form or dialog. Assign the proper values to the needed properties for your task.
Then tell DriverLINX to execute the Service Request by calling the Refresh method
for the control. DriverLINX will report information about the task back to the
application using control events.

Summary

DriverLINX provides a hardware-independent, abstract model of data-acquisition
hardware consisting of seven possible Logical Subsystems. Each Logical Subsystem
treats data-acquisition tasks as conceptually similar. Devel opers program data-
acquisition tasks by setting up the properties in the Request, Event, and Select
Groups of a Service Reguest.

The on-line Driver LINX Technical Reference Manual defines the DriverLINX
Specification for al data-acquisition boards. Using DriverLINX for a particular
board requires learning the supported properties for the hardware.

18 « Introducing DriverLINX

DriverLINX Counter/Timer User’s Guide

Counter/Timers and DriverLINX

Counter/Timer Hardware Description

Most counter/timer boards use either the Intel 8254 Programmable Interval Timer or
the AMD Am9513 System Timing Controller. The Intel 8254 isa much simpler
device than the Am9513 chip, and the 8254 has limited capabilities without external
circuitry and connections. Most vendors use the 8254 for clock generation on data-
acquisition devices, but, for stand-alone counter/timer devices, they usually use the
more complex Am9513 chip or proprietary chips asin the Keithley KPCI-3140 (and
the compatible KPCI-3100 Series).

The DriverLINX Counter/Timer programming model supports diverse hardware
using a common programming model. Although the programming model is common,
developers should understand the inherent hardware differences among counter/timer
chipsif they need to write applications to support different counter/timers. The
following sections present an overview of hardware features of these chips.

Intel 8254

The Intel 8254 provides three 16-bit timing channels per chip that support six pulse
and frequency generation modes. The Intel 8254 is capable of simple event counting,
rate and square wave generation, one-shot, and strobe applications.

The following table describes the six operation modes and variations of the Intel
8254 counter/timer chip. For a detailed description of these modes, see “8254
Operating Modes” on page 113.

Mode Description

Event counting

Hardware retriggerabl e one-shot

Rate generator

Square wave generator
Software triggered strobe
5 Retriggerable hardware triggered strobe

A|lW|IN|(FL]|O

Table 1 Designations for 8254 Counter/Timer Modes

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX « 19

Without external circuitry, however, the Intel 8254 does not support selectable clock
sources, gating control, or output polarity. The effect of the gate input on counting is
afunction of the selected mode. The 8254 has no built-in frequency prescaler and
only countsin binary.

For more information, see the Intel 8254 Programmable Interval Timer data sheet
and your counter/timer hardware User’s Guide.

KPCI-3140 Counter/Timer Chip

The counter/timer chip in the Keithley KPCI-3140 and KPCI-3100 Series provides
four 16-bit timing channels per chip that support 3 pulse and frequency generation
modes. In addition, the chip has two 24-bit counters but the only counter/timer
function they can perform is to pace interrupt mode tasks.

The following table describes the three operation modes of the KPCI-3140
counter/timer chip. For a detailed description of these modes, see “KPCI-3140
Operating Modes” on page 116.

Mode Description

0 Non-retriggerable One-shot
1 Retriggerable One-shot

2 Continuous Increment

Table 2 Designations for KPCI-3140 Counter/Timer Modes

Am9513

The Am9513 provides five 16-bit timing channels per chip that support 19 pulse and
frequency generation modes. In addition, the Am9513 supports a variety of software
options to electronically interconnect counter channels and to program outputs. The
Am9513 allows software to select 16 counting sources and 5 output modes
independent of the chip’s operating mode. This chip has five built-in frequency
prescalers and can count in either binary or binary coded decimal (BCD) modes.
When using the prescalers in binary mode, each counter channel has an effective
dynamic range of 32-bits.

The following table describes the 19 operation modes of the Am9513 and AMD’s
letter designation for each mode. For a detailed description of these modes, see
“Am9513 Operating Modes” on page 117.

Mode Description

Software triggered Strobe with no hardware gating

Software triggered Strobe with level gating

Hardware triggered Strobe

Rate Generator with no hardware gating

Rate Generator with level gating

Non-retriggerable One-Shot
Software triggered delayed Pulse one-shot
Software triggered delayed Pulse one-shot with hardware gating

I|IO|MmMoO|O|w|>

20 ¢ Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

Mode

Description

Hardware triggered delayed Pulse strobe

Variable Duty Cyclerate generator with no hardware gating

Variable Duty Cycle rate generator with level gating

Hardware triggered delayed Pulse one-shot

Software triggered Strobe with level gating and hardware retriggering

Software triggered Strobe with edge gating and hardware retriggering

Rate Generator with synchronization

Retriggerable One-Shot

Delayed Pulse one-shot with level-selected reloading

<|lw|[BlO|O|Z2|F | X[~

Frequency-Shift Keying

x

Rate Generator with edge gating

Table 3 Letter Designations for Am9513 Counter/Timer Modes

Each Am9513 chip occupies 2 consecutive 1/0 addresses. The first location
addresses a control port and the second a data port.

The Am9513 can be a complex chip to learn, program, and use because of itsrich
feature set. For detailed hardware information, consult Advanced Micro Devices’

AMO513A/AmO513 System Timing Controller Technical Manual and your
counter/timer hardware user’s guide.

DriverLINX Counter/Timer Model

Clock

Gate

Counter

Timer Output

Figure 1 DriverLINX Counter/Timer Model

DriverLINX abstracts all counter/timer hardware chips as an array of three terminal

devices. The terminals of an individual counter/timer are

DriverLINX associates with each counter/timer channel four operating properties.

Clock—the source input for dividing down to a lower frequency or for
counting external events.

Gate—the control input for triggering, re-triggering, or gating the
counter/timer operation.

Output—the counter/timer output frequency, pulse, or strobe.

The properties are

M ode—defines the operational task for the counter/timer channel.

Period—defines the cycle period or divisor for the counter/timer
channel.

DriverLINX Counter/Timer User’s Guide

Counter/Timers and DriverLINX « 21

e OnCount—defines high duration of the period for asymmetrical output
trains or pulses.

e Pulses—defines the number of periods to generate.

Program Counter/Timer Channels E2

Chn0 | chn1 | Chn2 | Chn3 | Chnd | Group |

— Courter/Timer

LClock, Mode ID - Rate 'I
ID - Imnternal 1 'I Period ID— Dutput

IEI - Default 'I
Gate OnCaLnt IIJ
ID - Enahled 'I -
Pulzes ID - Continuous vI

Status IUnconfigured

Configure | Start I Stop |
0k I Cancel | S | Help

22 « Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

Capabilities of DriverLINX’s
counter/timer subsystem
depend on the hardware
features of your board.

By selecting values for these seven properties and, where necessary, making the
appropriate connections between counters, applications can program DriverLINX to
execute one of the counter/timer’s basic operating modes or the following
counter/timer operations and tasks:

e Event counting—16-, 32-, and 64-bit counters for signals at@heck
input.

* Frequency measurement—16- and 32-bit frequency measurement.

* Interval measurement—Measure time between two consecutive
pulses at a single input or two pulses at separate inputs.

e Period and pulse width measurement—Measure duration of each
cycle or half cycle.

* Pulse generation—Generate a variety of one-shot pulses and strobes.

« Frequency generation—Generate periodic pulse trains, variable duty
cycle waveforms, square waves, or input-modulated waveforms.

Applications may program and operate counter/timers independently, or they may
configure the operating mode for several counter/timers and start or stop them
synchronously. For hardware boards that support interrupts, applications may
program a list of timers whose current value DriverLINX will read into a buffer on
each interrupt.

The following tables show the legal values for @leck, Gate, Output, andM ode
fields of a DriverLINX logical counter channel. Note that the capabilities of the Intel
8254 are a subset of the Am9513’s capabilities.

Clocks

The Clock property specifies the source input for the abstract counter/timer of a
Logical Channel.

Clock Description Intel 8254 | KPCI-3140 | Am9513
Internal 1.. Internal clock frequency yes yes (Internall | yes
Internal5 prescaled at 1 of 5 taps (Internall only)
only)
Sourcel.. Use channel 1..5 source no no yes
Sourceb (clock) input
Gatel.. Usechannel 1..5gateinput | no no yes
Gateb
External Externa clock frequency yes yes yes
(usually positive edge)
ExternaPE | Externa clock frequency yes yes yes
(positive edge clocking)
ExternaNE | External clock frequency no yes yes
(negative edge clocking)
TCNm1 Use channel N-1 terminal no yes yes

count output

Table 4 Allowed Values for Rate Event Clock Property

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX « 23

Gates

For the Am9513-based counter/timers, you may also request that the
clock input use the negative-going edge of the clock input rather than

the positive edge.

Internal 1 always designates the onboard hardware clock.

Internal2..Internal 5 designate lower frequency taps of the master clock
if the hardware supports this capability.

If the application uses an Internal 1 clock with a Period value greater
than the hardware counter/timer supports, DriverLINX will
automatically select available hardware prescalers to obtain the closest
value to the requested Period.

The Gate property selects how the abstract counter/timer uses the gate input of a
Logical Channel. Generally, thisinput gates the counting or measuring process or
triggers the counter/timer operation.

Gate Description Intel 8254 | KPCI-3140 | Am9513

Enabled Enable gate yes yes yes

Disabled Enable gate no* yes yes

NoConnect | No connection modes 0,2-4 | yes yes

LoLevel Logic low level at gateinput | no mode 2 yes

GateN N

LoEdge Negative edge at gateinput | no modes 0,1 yes

GateN N

HiLevel Logic high level at gate modes 0,2-4 | mode 2 yes

GateN input N

HiLevel Logic high level at gate no no yes

GateNpl input N+1

HiLevel Logic high level at gate no no yes

GateNm1 input N-1

HiTcNml Positive edge at terminal no no yes
count output N-1

HiEdge Positive edge at gateinput N | modes 1,5 modes 0,1 yes

GateN

Table 5Allowed Values for Rate Event Gate Property

*Some boards provide off-chip hardware that can disable the 8254’s gate.

24 « Counter/Timers and DriverLINX

DriverLINX Counter/Timer User’s Guide

Outputs

The Output property programs the polarity and duty cycle of the abstract
counter/timer’s output port.

Output Description Intel 8254 | KPCI-3140 | Am9513
Default Depends on operation (see | yes yes yes
“Counter Output” on page
55)
LoToggled | Start low; toggle at TC yes yes yes
LoActive Active low pulse at TC yes yes yes
LoZ Inactive low impedance no no yes
output
Toggled Toggle at TC yes no yes
HiToggled | Start high; toggle at TC yes yes yes
HiActive Active high pulse at TC no yes yes
Hiz Inactive high impedance | no no yes
output

Table 6 Allowed Values for Rate Event Output Property

DriverLINX automatically selects an output type if the application requests Default.
Depending on hardware capabilities, DriverLINX chooses the output option based on
the requested Mode. The Intel 8254 allows only one output mode, which depends on
the operation.

Modes

The M ode property selects the type of rate generator or task the abstract

counter/timer will perform. Mode values fall into two general groups—pulse and
waveform generators and measurement tasks. Note that the generator modes (e.g.,
RateGen, SqWave, etc.) program a single Logical Channel of an abstract
counter/timer while the measurement modes (e.g., Frequency, Interval, etc.) may
program multiple Logical Channels.

Generator| Description Intel 8254 | KPCI-3140 | Am9513
RateGen Periodic rate generator yes yes yes
SgWave Square wave generator yes yes yes
VDCGen Variable duty cycle rate yes yes yes
generator
BurstGen Burst rate generator no no no
Divider Frequency divider no yes yes
Freg Freguency counter yes yes yes
Interval Interval timer yes no yes
Count Event counter yes yes yes
Pulsewd Pul se width measurement yes yes yes
SplitClk Split frequency rate no no no
generator

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX « 25

Generator| Description Intel 8254 | KPCI-3140 | Am9513
FskGen Frequency-shift keying no no yes
PulseGen Pulse generator no yes yes
Retrig Retriggerable rate generator | no no yes
RateGen

Retrig Retriggerable squarewave | no no yes
SgWave generator

Count32 32-bit event counter no yes yes
Count64 64-bit event counter no yes yes
Freq32 32-bit frequency counter no yes yes
FregRatio Frequency ratio counter no no no
OneShot One-shot pulse or strobe yes yes yes
Retrig Retriggerable one-shot pulse | yes no yes
OneShot or strobe

Table 7 Allowed Values for Rate Event Mode Property

« Some of the above mode field options, e.g., BurstGen, specify features
that require external connections, which some vendors have prewired
into their products.

« Other options, such as frequency measurement modes, require external
user connections between counter/timer terminals.

DriverLINX Task Model

To manage a user application’s data-acgjtion requests, BverLINX creates tasks.
A DriverLINX task consistsf the set d hardware and systn resourceand the
boardspecfic protocols required to execute the datguisition request.
Applications carstart tasksmonitor tasks, and stop taghg suomitting Service
Requets to DriveLINX.

Hardware Sharing

DriverLINX allows multiple applications to share a datayaisition device or abws
multiple tasks to run on a devidetlie hardware @n support concurrent operations.
To support hatware sharingnd concurreay, DriverLINX assigns resources to each
taskand then compares the resource regaritents ¢ a new taskwith the in-use
resources of alturrent taskslf the new requiements do not confit with thecurrent
in-use resources, DriieilN X updates the in-use resoureesl starts the task.
Othewise, DriveLINX rejects tle newly requested task.

Creating Tasks

User applications create data-acquisitiasksby settngthe progrties of a Service
Request tovalues that speify the taskThen the applicabh sibmitsthe Sevice
Request to DriverlNX, which tran$orms eaclServie Request into a procedufer
performing the task on the qaested hailware subsysim. To execute aaw task,
DriverLINX performs thefollowing stepsfor eachServie Request:

26 ¢ Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

1. Audit the Service Request fields to determine if the hardware can
perform the task.

Request necessary hardware and system resources to perform task.

Convert the Service Request into the hardware parameters and
protocols to perform the task.

4. Execute the task on the hardware.

5. Notify application of any requested task events as they occur.

6. Wait for the task to complete.

7. Release requested hardware and system resource used by the task.

If DriverLINX detects any errorsin the Service Request or in the hardware during
the task, it aborts the task and returns an error code to the application. If the
application requests hardware resources that are already in use by another thread or
process, DriverLINX also stops the task and notifies the application.

Monitoring and Stopping Tasks

A Start operation fillsin the Applications may also check the status of atask or terminate atask by modifying the
taskld property. DriverLINX operation property of the Service Request used to create the task and resubmitting it
uses the taskld to determine to DriverLINX. To check status, change the operation property to “status”. To
to which task a Satus or Sop terminate a task, change the operation property to “stop”.

operation applies.

DriverLINX Events

Applications can request that DriverLINX notify thpplication of significant events
during execution of a task. By designing a data-acquisition task to use events, an
application can overlap data processing with data collection. Events allow the
application to coordinate these two activities without the overhead associated with
polling for the status of the data collection task and without the scheduling problem
of coordinating data processing with partial data collection.

DriverLINX posts events to an application through the Windows messaging
mechanism. DriverLINX supports the following messages:

Message Description Posted
ServiceStart Task is starting Default. Can disable.
ServiceDone Task is complete Default. Can disable.
BufferFilled Buffer processing complete | Can enable.

Datal_ost Data over/underrun Always reported.
TimerTic Timer interrupt occurred Non-buffered CT task.
StartEvent Start event detected Can enable.
StopEvent Stop event detected Can enable.

Critical Error Hardware error Always reported.

Table 8 DriverLINX Messages

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX « 27

The most useful events for applications are ServiceDone, BufferFilled, and Datal ost.

e The ServiceDone event notifies the application that DriverLINX
terminated the task. Tasks may end because the application stopped it,
the stop event condition in a Service Request was satisfied, or
DriverLINX detected a run-time error and stopped the task.

* TheBufferFilled event notifies the application that DriverLINX has
read or written the current buffer. Applications can use this message
with multiple data buffers to eliminate polling the driver for the status
of the task and to overlap data processing with data acquisition.

« The DatalLost event notifies the application that DriverLINX detected
that the hardware was filling or emptying buffers faster than the
application or driver could process the buffers.

The other DriverLINX events are useful for special cases.

* The ServiceSart event notifies the application that DriverLINX is
starting the task. An application might use this event to provide visual
feedback to the user interface that the task is starting.

* TheTimerTic event notifies the application that DriverLINX has
processed a clock interrupt. DriverLINX only reports this event for the
counter/timer subsystem when the task is not using data buffers.

e The SartEvent notifies the application that DriverLINX detected that
the logical condition the application specified in the Service Request’'s
Start Event is true. DriverLINX can only report this event if the
hardware generates an interrupt associated with the Start Event.

* TheStopEvent notifies the application that DriverLINX detected that
the logical condition the application specified in the Service Request’s
Stop Event is true. DriverLINX can only report this event if the
hardware generates an interrupt associated with the Stop Event.

e TheCriticalError event notifies the application that DriverLINX
detected an unexpected critical error other fhataLost. This usually
indicates either the hardware or software is malfunctioning and needs
repair or re-configuration.

DriverLINX Operations

For most counter/timer hardware, applications can select one of five operations for a
task. The basic counter/timer task operations are

« Initialize—resets the counter/timer subsystem software and/or
hardware.

« Configure—set up a counter/timer for a task, but do not start the task.

e Start—set up and arm a counter/timer for a task. Ghaee, Clock, and
M ode properties determine when the hardware starts counting.

» Status—return the current counter/timer count value and status to the
application.

« Stop—disarm the counter/timer task and make the task resources
available for new tasks.

Thelnitialize, Configure, andStart operations all create a DriverLINX task. The task
that DriverLINX creates for the first two operations exists only briefly during the

28 ¢ Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

application’s function call to DriverLINX. For &art operation, however,

DriverLINX creates a task that may exist indefinitely until the application explicitly
ends the task with &top operation or DriverLINX ends the task because the Stop
Event has become true.

DriverLINX Modes

For most counter/timer hardware, DriverLINX supports three task mede#:R,
POLLED andINTERRUPT.

* When an application us€THER mode, DriverLINX initializes the
subsystem or configures a Logical Channel without starting the
counter.

e When an application us€OLLED mode, DriverLINX starts the
counter/timer hardware running, but it does not automatically report
any status information about the task to the application.

e When an application uséSTERRUPT mode, DriverLINX starts the
counter/timer hardware running with a hardware interrupt enabled. At
each interrupt, DriverLINX either sendSamer Tic event to the
application or saves the current count of the requested counter/timers
into a data buffer.

For other subsystems, polled When using polled mode counter/timer operations, DriverLINX returns control to
mode tasks start and stop the application after starting the counter/timer hardware. Applications must use the
before DriverLINX returns Satus operation to read the current count value of a counter/timer. The counte
control to the application. task will run until the application ends it wittStop operation.

When using interrupt mode counter/timer operations, DriverLINX also returns
control to the application after starting the counter/timer hardware. However, if the
application specified data buffers in the Service Request, DriverLINX will
automatically read and store the current counter value(s) into the buffer. The
application may request that DriverLINX read the next Logical Channel in the
Channel list at each interrupt or that DriverLINX read all Logical Channels at each
interrupt. If the application is not using buffers, then DriverLINX sends a TimerTic
event to the application at each interrupt.

Individual and Group Tasks

Applications can control individual counter/timer channels as separate tasks or they
can synchronize the starting and stopping of multiple channels. To collect multiple
channels into a group, the application first perfo@ogfigure operations on each
channel in the group to set up the hardware. Then the application can start the
channels in the group by executing a Service Request W#rteoperation that lists

the group’s channels in the Service Request’s channel list. By uSing eperation
instead, the application can simultaneously stop all channels in the group. For more
information, see “Group Tasks” on page 38.

Mapping Logical Channels to Counter/Timer Hardware
Channels

DriverLINX maps the hardware’s counter/timer channels to consecutive Logical
Channels. The following table shows the correspondence between the hardware
channels and Logical Channels. Note that DriverLINX always uses zero-based

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX « 29

numbering for Logical Channels while vendors often use one-based channel
numbering.

Logical |0 1 2 3 4 5 6 7 8 9
Channel

CTM-05 1 2
CTM-05A |1 2 3 4
CTM-10 1A 2A 3A 4A 5A 1B 2B 3B 4B 5B

Table 9 Map of Logical Channelsto Counter/Timer Hardware Channels

For other models, see the appropriate Using DriverLINX with your Hardware
manual.

Digital I/O Hardware

Software cannot read or The MetraByte counter/timer boards support one or more digital 1/0 ports. The
control the strobe lines for CTM-05/A board has one 8-bit digital input port with latch and one 8-bit digital
digital inputs without external output port with latch. The CTM-10 board has two 8-bit digital input ports with
connections. latches and two 8-bit digital output ports with latches. A strobe line input at each

input port controls whether the input data passes through the latch or is held by the
latch. There is no software control over this strobe line. For more information, see
the CTM-10 and CTM-05/A User’s Guide

These digital ports are physically independent of the counter/timers and do not have
any internal connections to the counter/timers. Also, the digital 1/0O ports do not
generate any hardware interrupts. Applications can read or write the digital ports
independently of the counter/timers. DriverLINX does support reading a digital input
port at each counter/timer interrupt to start or stop a counter/timer task.

The CTM Series boards also have a digital input line that generates a hardware
interrupt. DriverLINX models this line as a special-purpose, 1-bit digital input
channel. Associated with the interrupt input line is another external input line that
enables or disables the interrupt input line. DriverLINX has no direct hardware
control over this gating line.

For other models, see the appropriate Using DriverLINX with your Hardware
manual for details on digital 1/O features.

30 ¢ Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

Mapping Logical Channels to Digital Hardware Channels

DriverLINX also supports bit-
level 1/0O using masks. See
“Reading or Writing Specific
Digital Bits” on page 72.

DriverLINX maps the hardware’s digital channels to consecutive Logical Channels.
The following table shows the correspondence between the hardware channels and
Logical Channels. Note that DriverLINX always uses zero-based numbering for
Logical Channels while vendors often use one-based channel numbering.

Logical 0 1 2

Channel

CTM-05 Port A 1/0O externa interrupt

CTM-05A Port A 1/0O externa interrupt

CTM-10 Port A 1/0O Port B 1/10 external interrupt

Table 10 Map of Logical Channels to Digital Hardware Channels

To support writing hardware-independent applications, DriverLINX assigns special
fixed Logical Channel numbers as aliases for the Logical Channel of an external
interrupt line.

For other models, see the appropridsing DriverLINX with your Hardware
manual for details on digital I/O features.

Properties of Logical Channels

The hardware design of the digital channels on the CTM Series does not support
reading back the last value written to a digital output port. Writing Logical Channel 0
outputs data to a physically different latch than when an application reads Logical
Channel 0. If needed, applications must maintain their own shadow copies of the
values written to a digital output port.

Applications that want to share an output port with another thread or process can do
so without knowing the current output value of the port. Use either bit-level 1/O (see
“Reading or Writing Specific Digital Bits” on page 72) or extended Logical Channel
addressing (see “Combining or Splitting Logical Channels” on page 31).

Combining or Splitting Logical Channels

DriverLINX supports a software extension to Logical Channel addressing that
allows applications to combine adjacent Logical Channelsinto asingle channel or
split aLogical Channel into smaller addressable parts. For instance, applications can
address individual bits on the digital 1/0 board or read and write multiple channels
with a single operation.

To usethe Logical Channel addressing extensions, form a 16-bit Logical Channel
address by combining the channel number of an addressable unit with asizefield as
follows:

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX « 31

Always 0 Size Channel

Bits 15 14..12 11..0

Range 0.1 0.7 0..4095
Table 11 Field Layout of an Extended Logical Channel Address
The following table specifies the 3-bit size codes:

Size Code Unit Bits

0 native varies with hardware

1 bit 1

2 half nibble 2

3 nibble 4

4 byte 8

5* word 16

6* dword 32

7* qgword 64

Table 12 Size Codes for Extended Logical Channel Address

* Neither the CTM-05/A nor CTM-10 support 32- or 64-bit digital 1/O, and the
CTM-05/A does not support 16-bit digital /0.

“Native” units refer to the hardware-defined digital channel size. For most boards,
this is the same as an 8-bit byte. When using extended Logical Channel addressing,
DriverLINX groups digital bits in units defined by the size code and then assigns
consecutive channel numbers starting from zero. For instance, a CTM-10 with two 8-
bit ports would have the following channel addresses for each size code:

Unit Channels Address (dec) Address (hex)
native 0.1 0.1 0.1

bit 0..15 4096..4111 1000..100F

half nibble 0.3 8192..8195 2000..2003
nibble 0.2 12288..12290 3000..3002

byte 0.1 16384..16385 4000..4001

word 0 20480 5000

32 « Counter/Timers and DriverLINX

DriverLINX Counter/Timer User’s Guide

Implementation Notes

For extended Logical Channel addressing of unit sizesless than the
native size, DriverLINX only supports single-value transfers.

For block /O transfers, DriverLINX only allows Logica Channel
addressing at unit sizes equal or larger than the native size. Note that
extended Logical Channels may not map to consecutive physical

channels. Because DriverLINX uses the CPU'’s block I/O instructions
for polled, block I/O transfers, some bytes will not represent I/O ports.

When using size codes larger than the native addressing unit, you may
not be able to address all hardware ports if the number of available
digital I/0O lines is not an integral multiple of the size unit.

DriverLINX Counter/Timer User’s Guide

Counter/Timers and DriverLINX « 33

Programming Counter/Timers
with DriverLINX

DriverLINX Counter/Timer Operations

The DriverLINX API is This chapter describes how to control your counter/timer board using the
available asa C/C++, VBX, DriverLINX API for the most common tasks. Each section presents background
or ActiveX interface. See information and concepts for performing a particular task and then presents
“Interfacing to DriverLINX" DriverLINX proceduresin C/C++ and Visual Basic for atask. Users of other

on page 43. programming languages should use the ActiveX control interface for DriverLINX

and look at the Visual Basic examples for how to program tasks.

The DriverLINX counter/timer model provides over 12,000 potential configurations
for each counter/timer channel. If you alow for interconnecting counter/timer
channels, the number of potential combinationsis staggering. Naturally, real
hardware only supports a subset of possible configurations. To keep things
manageable, follow these simple steps:

1. Decidethe basic task category you need—event counting, frequency
measurement, interval measurement, period and pulse width
measurement, pulse and strobe generation, frequency generation.

2. Go to the section of this guide that describes using a counter/timer for
your task.

3. Decide if you need a repetitive or non-repetitive measurement or
waveform generation.

4. Decide if you need triggering (rising or falling edge) or gating (active
high or low levels).

5. Look at the Rate Event Properties tables for your task to determine if
DriverLINX supports your requirements.

6. Look at “Counter Output” on page 55 to set up the counter/timer
output.

If the Rate Event Properties tables do not show an entry for your requirements, then
you may need additional external hardware and/or multiple counter/timer channels to
support your task. Look at “Hardware Reference” on page 113 Operating Modes to
see if any of the basic hardware modes, alone or in combination, will meet your
requirements. If so, look for the corresponding mode in one of the Rate Event
Properties tables and configure each counter/timer channel as shown. If you do not

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 35

find what you are seeking, then you will need to design some external hardware for
your application.

DriverLINX Tasks for All Subsystems

The following DriverLINX tasks are common for all subsystems and all supported
hardware boards:

* Connecting to adriver—DriverLINX requires applications to open,
select, and close drivers for specific boards. See “Opening and Closing
a DriverLINX Device Driver” on page 44.

e Sdecting adriver—DriverLINX allows your application to control
multiple different types of hardware boards. See “Selecting a
DriverLINX Device Driver” on page 46.

« Edit a Service Request—DriverLINX allows your application to
display theEdit Service Request property page to quickly test or modify
Service Requests during application development. See “Displaying the
Edit Service Request Dialog” on page 47.

* Error reporting—Applications can use DriverLINX to display
DriverLINX errors in message boxes. See “Reporting a DriverLINX
Error” on page 48.

e Stopping atask—Applications can use a Service Request to stop a
DriverLINX task. See “Stopping A DriverLINX Task” on page 49.

« Deviceinitialization—DriverLINX requires your application to
initialize all subsystems on a board before performing any other tasks.
See “Initializing the Device” on page 50.

* Subsystem initialization—Applications can initialize a single,
specified subsystem. See “Initializing a Counter/Timer Subsystem” on
page 51.

e Using DriverLINX messages and events—DriverLINX reports task
information to your application using the Windows messages or events.
See “Using Messages and Events” on page 52.

DriverLINX Tasks for Counter/Timer Subsystem
The following DriverLINX tasks are specific to the counter/timer subsystem:

e Counter output—DriverLINX defines default output signals for
counter/timer channels as well as application-defined outputs. See
“Counter Output” on page 55.

« Statuspolling—Applications can use a Service Request to monitor the
current value and status of a counter/timer. See “Status Polling a
Counter/Timer” on page 56.

e Configuring a counter/timer—Applications can configure and arm a
counter/timer without actually starting the counter. See “Configuring a
Counter/Timer Channel” on page 57.

e Converting between counts and time—DriverLINX supports
methods to convert between counter tics and time. See “Converting
Between Counts and Time” on page 58.

36 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

The following task-oriented functions, although specific to the counter/timer
subsystem, are defined to be portable across data-acquisition boards:

« Event counting—DriverLINX supports counting external events using
16-, 32-, or 64-bit counters. See “Using Task-Oriented Functions” on
page 79.

* Frequency measurement—DriverLINX supports counting events for
a known time period. See “Frequency Measurement” on page 85.

e Interval measurement—DriverLINX can measure the interval
between two pulses on a single input line or on two separate input lines.
See “Interval Measurement” on page 92.

e Period and pulse width measurement—DriverLINX can measure the
duration or period of a single cycle of an input or the duration of the
positive or negative half cycle of an input. See “Period and Pulse Width
Measurement” on page 96.

* Pulseand strobe generation—DriverLINX can generate a variety of
single, delayed pulses and strobes. See “Pulse and Strobe Generation”
on page 101.

* Frequency generation—DriverLINX can generate a variety of pulse
trains, variable duty cycle waveforms, square waves, and frequency-
shift keyed waveforms. See “Frequency Generation” on page 107.

Foreground Tasks

The simplest technique for your application to control counter/timers with
DriverLINX is to use a foreground task. Your application starts a counter/timer using
a DriverLINX Service Request with the Mode property set to “Polled” and the
Operation property set to “Start”. DriverLINX will configure, arm, and start a
counter/timer task.

If your application needs to monitor the current count of the counter/timer, it should
poll the counter/timer’s status. See “Status Polling a Counter/Timer” on page 56.
DriverLINX will return to your application the current count value with each Service
Request. See “Converting Between Counts and Time” on page 58 for how to convert
a count to seconds.

When your application wants to end the current task or reprogram the counter/timer
with a new task, it must first stop the current task. See “Stopping A DriverLINX
Task” on page 49.

If your application needs to first configure several counter/timer channels and then
start them simultaneously, see “Group Tasks” on page 38.

Background Tasks

DriverLINX can also run counter/timer tasks in the background asynchronously
collecting data while the application processes other data in the foreground.
DriverLINX can support asynchronous mode only if

« the counter/timer board supports interrupts, and

« you have configured the board to use an available interrupt.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 37

Background, interrupt-driven tasks can either report an event to the application at
each interrupt or they can use a data buffer to collect samples at each interrupt.

« Unbuffered background counting—DriverLINX posts a “timer tic”
event to the application at each interrupt. See “Using a Counter/Timer
to Generate Clock Messages” on page 60.

« Buffered background counting—DriverLINX stores the current
counter value into a memory buffer at each interrupt. See “Storing the
Counter/Timer Value at Each Interrupt” on page 61.

Group Tasks

The preceding tasks allow you to program an independent task on each counter/timer
channel. You can also configure multiple counter/timer channels and then
simultaneously start or stop them as a group.

e Configuring channelsfor a group—DriverLINX allows the
application to configure, but not start, a Logical Channel so that the
application can later start several channels simultaneously. See
“Controlling Group Tasks” on page 63.

* Polled mode groups—DriverLINX can start or stop a non-interrupt
task that controls multiple counter/timer channels. The application can
read the individual counter values by status polling. See “Polled Mode
Groups” on page 65.

e Interrupt mode groups—DriverLINX can start or stop an interrupt-
driven task that controls multiple counter/timer channels. If the
application specifies data buffers, DriverLINX reads the counter values
into the buffer at each interrupt. Otherwise, DriverLINX reports a
“timer tic” event to the application at each interrupt. See “Interrupt
Mode Groups” on page 67.

These examples illustrate the most common counter/timer tasks that most
applications need. You can also create special-purpose counter/timer services by
programming individual counter/timers with any of the hardware-supported modes.
See “Hardware Reference” on page 113 Operating Modes for more information.

DriverLINX Tasks for Digital Subsystems
For the CTM Series, DriverLINX also supports the following digital /O operations:

e Singlevalue I/O—DriverLINX synchronously reads or writes a single
value to an I/O port. See “Reading or Writing a Single Digital Value”
on page 68.

* Masked, single value I/O—DriverLINX synchronously reads or writes
only the selected bits of an 1/0O port. See “Reading or Writing Specific
Digital Bits” on page 72.

e Block transfer on an 1/0O port—DriverLINX synchronously transfers
a block of data to or from an I/O port. See “Rapidly Transferring a
Block of Digital Data” on page 75.

38 ¢ Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Using DriverLINX’s Service Requests

The Edit Service Request
property pageis a visual
representation of the Service
Request object that your
application programs.

All counter/timer operations use the Service Request to pass your task specification

to DriverLINX. If you are using C/C++, the Service Request is a data structure

defined in the include file,drvlinx.h”. If you are using the ActiveX (OCX) control

to program DriverLINX, the Service Request is an instance of the control object with
member properties that you set up.

Whatever language you are using, the principles of setting up a Service Request are
the same, although the syntax varies slightly with each language. This manual will
use the Service Request terminology displayed ifEthieSer vice Request property

page. See the example programs or the onElimiger LINX Technical Reference

Manual for the language-specific syntax. See “Displaying the Edit Service Request
Dialog” on page 47 for how to pop-up thdit Service Request dialog in your
applications.

Properties Common to All Service Requests

All Service Requests require that the application define the following properties in
the Request Group:

Edit Service Request E

— Request

Devvice: Subzystem: kode: Operation: = =
y P Cancel |

IDeviceD ﬂ IEounterHtimEﬂ IDlher ﬂ IIniliaIize j
[Audit orily Help... |

= EvEntE SE[ECEEE

» Device—specifies the Logical Device number of a configured device as
the target of this Service Request.

e Subsystem—specifies the primary Logical Subsystem that is the target
of this Service Request.

 Mode—suggests the hardware technique (Other, Polled, Interrupt,
DMA) that DriverLINX should use for this Service Request.
DriverLINX may select another mode to execute the task.

* Operation—specifies the primary command to execute for this Service
Request.

The additional Service Request groups and properties depend on the selected
subsystem, operation, and task your application intends to perform. See
“DriverLINX Counter/Timer Operations” on page 35.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 39

For subsystems other than the
counter/timer, DriverLINX
executes Polled Modetasks
synchronougly.

Modes and Operations for Counter/Timers
DriverLINX’s counter/timers use only the following modes:

e Other—used to initialize the counter/timer subsystem or configure a
Logical Channel without starting counting.

» Polled—specifies that applications issue software commands to
DriverLINX to start, monitor, and stop counters.

* Interrupt—specifies that DriverLINX performs counting operations at
each external interrupt.

For eachM ode using the counter/timer subsystem, DriverLINX supports the
following operations:

Mode |Operation | Description
Other Initialize Initialize counter/timer subsystem
Configure Initialize aLogical Channel without starting counting
Polled Start Set up and start a counter/timer task
Status Return status and current value of a counter/timer
Stop Stop a counter/timer task
Interrupt | Start Set up and start a background counter/timer task
Status Return status and position of next buffer sample to process
Stop Stop a background counter/timer task

Table 13 Allowed Driver LINX Counter/Timer Operations by Mode

Other Mode

DriverLINX executeOther Mode tasks synchronously, i.e., the task starts, executes,
and finishes before DriverLINX returns control back to the calling application.

Polled Mode

For the counter/timer subsystem, DriverLINX uses a quasi-synchronous technique.
For Sart operations, DriverLINX initializes and starts the task before returning
control to the application. Applications then call DriverLINX to monitor the status of
the task or to stop the task. DriverLINX does not automatically stop polled tasks
unless DriverLINX detects an error while executing an application-issued command.

Interrupt Mode

DriverLINX executed nterrupt Mode tasks asynchronously, i.e., DriverLINX
initializes the task and then returns control to the application. At each interrupt,
DriverLINX briefly regains control from the application and either starts the task,
collects task data, reports status to the application, or stops the task.

The application specifies the work DriverLINX performs at each interrupt by the
properties in the Service Request. DriverLINX reports task status to the application

40 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

using either the Windows messaging system or control events. See “DriverLINX
Events” on page 27.

Using Events to Control Service Requests

A few Service Request DriverLINX uses the concept of an “event” to logically control the processing of a
operations do not use events. Service Request task. For all tasks, DriverLINX requires your application to specify
an event for the three events in the Events Group.

Edit Service Request E

— Request

Devvice: Subzystem: kode: Operation:
y P Cancel |

IDeviceD ﬂ IEounterHtimEﬂ I 'I ISlarl "I
[Audit orily Help... |

— Ewents Select »»
© Timing > " Start >3 © Stap »>
— - = € Channels
Rate j INnne j INnne ﬂ Buffers
) Elage

« Timing—specifies the timing, or pacing, clock DriverLINX uses
during processing a Service Request task.

« Start—specifies when DriverLINX starts counting or acquiring data
for this Service Request task.

* Stop—specifies when DriverLINX stops counting or acquiring data for
this Service Request task.

The example Service Request above defines a synchronous (polled) start of a
counter/timer channel. The application specifies the Logical Channel and
configuration for the counter/timer channel in the Rate Event properties (not shown
in the above dialog).

The on-lineDriverLINX Technical Reference Manual defines an extensive set of
possible events for a wide variety of hardware and data-acquisition protocols. A
DriverLINX driver for counter/timers, however, uses only a few events that this
guide describes.

See the on-line DriverLINX DriverLINX defines events as hardware and vendor independent and allows
Technical Reference Manual applications to use each event as a timing, start, or stop event whenever logical.

for more information about Some hardware boards, however, do not support events that are common to the
the Logical Device majority of similar products, or they support only a subset of the event’'s parameters.
Descriptor. To allow applications to handle hardwatependent features, DriverLINX publist

board-specific information in the Logical Device Descriptor. Applications that need
hardware independence should query the Logical Device Descriptor to determine the
available features of a board.

Events for the Counter/Timer
DriverLINX’s counter/timer operations use only the following events:
* None—indicates that the task does not require this event.

* Command—indicates that the Service Request starts or stops on
software command.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 41

e Terminal Count—indicates that the Service Request completes when
the hardware has transferred all samples into or out of the data buffers.

« Digital—when used as a start or stop event, specifies a digital input
channel to read and a masked set of bits to compare to a pattern. See
“Using Digital Start and Stop Events” on page 63. When used as a
timing event, specifies the external interrupt input line on the hardware,
which DriverLINX uses as a “clock” to pace the Service Request task.
See “Using the External Interrupt Input Line” on page 62.

« Rate—specifies the operating parameters for a Logical Channel of the
counter/timer subsystem.

The following table defines the events DriverLINX supports for each Mode on the
counter/timer subsystem.

Mode Timing Start Stop
Other Rate None None
Polled None None None
Rate Command Command
Interrupt Rate None None
Digital Command Command
Digital Digital
Terminal Count

Table 14 Allowed DriverLINX Counter/Timer Events by Mode

Specifying Counter/Timer Channels in a Service
Request

For most counter/timer Service Request operations, you specify the Logical Channel
for the operation in th€hannel property of a Rate Event. For group operations on
multiple Logical Channels, you specify the members of the group usirggltoe

Channels properties of a Service Request. Depending on the task and operation, your
application can specify a single Logical Channel, a consecutive range of Logical
Channels (Start/Stop), or a random list of Logical Channels.

Edit Service Request
— Request ok, |
Device: Subsyztem: Mode; Operation: Cancsl |
IDeviceD j Il:ounten’timej IF'DIIed j IStart j
™ Audit only Help... |
— Events Select »»
 Timing > Start >3 Stap »>
— - = % Channels
Rate j INnne j INnne ﬂ Buffers
£ Flags
— Select Channels
Channel: ||:| j Gain:l j Chan 0 Format Fulioezro
& Single ol I j I j
€ Start/Stop I si
u e i FErEnuE
c U [e

42 « Programming Counter/Timers with DriverLINX

DriverLINX Counter/Timer User’s Guide

In a preemptive multitasking For channelsin agroup, DriverLINX uses a single hardware operation to start or

system, the delay between stop members of the group. Note, however, that your application can specify Logical
each instruction can vary Channelsin a group that map to two different hardware chips on the CTM-10. In this
significantly and case, DriverLINX must use two separate instructions to control each chip.
unpredictably.

Specifying Data Buffers in a Service Request

DriverLINX can transfer multiple samples in one Service Request by using data
buffers.

» For group counter/timer requests that do not use interrupts, applications
can specify one buffer with alength equal to the number of Logical
Channels in the group. See “Polled Mode Groups” on page 65.

» For group counter/timer requests using external interrupts, applications
can specify multiple Logical Channels and up to 255 fixed-length
buffers of arbitrary size. See “Interrupt Mode Groups” on page 67.

e For untimed digital I/O transfers DriverLINX will use fast CPU block
I/O instructions. Applications can specify one Logical Channel and one
buffer as long as 128 KB. See “Rapidly Transferring a Block of Digital
Data” on page 75.

Edit Service Request E2
— Request
Device: Subsystem: haode: Operation:
Cancel |

IDeviceD ﬂ IEountera’timEﬂ Im 'I ISlarl "I
™ Audit anly Help... |

— Ewents Select »»
 Timing > Start Stgp s>
—mnd — = ' Channels
Rate ﬂ INnne j INnne j * Buffers
£ Flags

— Select Buffers

Samples: |5UU MNumber: |'| 'I I | ity

[Auto-allocate

To transfer only a single value in a Service Request, see “Reading or Writing a
Single Digital Value” on page 68.

Interfacing to DriverLINX

To use DriverLINX, applications must incorporate the DriverLINX API into their
code. Applications can then control multiple DriverLINX drivers and multiple
Logical Devices using DriverLINX’s API.

The DriverLINX API supports multiple languages for Win32 application
development. Currently DriverLINX supports two different language interfaces. The
header files to support these languages are all iDlteP| subdirectory where you
installed DriverLINX.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 43

+ C/C++—a data structure and function call API available for 32-bit
C/C++ applications.

e ActiveX—or OLE 2.0 Custom Control (OCX) in a 32-bit interface.
Visual Basic 4.0, Microsoft Visual C++ 4.0, Delphi 2.0, and most new
language tools support 32-bit ActiveX controls.

A hardware-specific All DriverLINX language interfaces bind tdrvLNX32.DLL". This DLL is
DriverLINX driver may not be operating system independent and allows you to run your binary application on
available on all platforms. either Windows 95/98/Me, or Windows NT/2000 as long as you have installed the

correct DriverLINX driver for your hardware and operating system.

Interface with C/C++
To use the C/C++ interface,

1. Add the following C header files in tid API subdirectory to your
programafter including the standard Windows definitions:

#include “drvlinx.h” /* DriverLINX API */
#include “dlcodes.h” /* DriverLINX error codes and macros */
#include “oemcodes.h” /* OEM-specific model codes */

2. Add the following import library to your project or linker’s list of
libraries,

« DRVLNX32.LIB

Using Non-Microsoft C/C++ Compilers

Note that some compiler tools, such as Borland C/C++, use a library file format that
is not compatible with Microsoft's format. Please checkRh&\PI subdirectory

where you installed DriverLINX for library files compatible with your compiler. If
present, you will have to rename them to the above library names. If not present,
most compilers provide a tool to create a linking library given a DLL. Please consult
your compiler vendor's documentation for assistance.

Interface with the Custom Control

DriverLINX supports one type of custom control:
1. OCX—32-bit ActiveX (formerly OLE) custom control

ActiveX Control

To add the ActiveX Custom Control (OCX) to your project, see the instructions for
your compiler and check the subdirectories where you installed DriverLINX for any
additional documentation. The filename of the 32-bit contrbILIXOCX32.0CX.

The controls it contains are in a library called ver LI NX Acti veX

Control s.

Opening and Closing a DriverLINX Device Driver

To communicate with a physical device, applications must first open a device driver.
With DriverLINX, applications can either specify the name of a specific driver or

they can supply a blank name. In this case, or if the app specifies an unknown name,
DriverLINX will display the Open DriverLINX dialog requesting the user to select a
driver to open.

44 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

For the MetraByte CTM Series, the name of the driver is “KMBCTM” and the driver
description is “MetraByte CTM Series”.

Open DriverLINX E3

Select driver to open:

IMetraB_l,ltel:TM Serier j Cancel |
Help |

Applications should close the device driver when they no longer need its services.
Closing a DriverLINX driver stops all active tasks and unloads the driver from
memory.

Open a Driver in C/C++

To load and prepare a DriverLINX driver for application use, call the following
function:

HI NSTANCE DLLAPI OpenbDriverLlI NX (const HWND hwhd, LPCSTR nane);

Parameter Type/Description
hwnd HWND Specifies one of the caller’s Window handles.
Name LPCSTR Specifies the name of the DriverLINX driver to load. If

NULL or the string specifies an unknown driver, DriverLINX
displays the Open DriverLINX dialog box.

This function returns an “instance handle” that the application must use to identify
the DriverLINX driver for theSelectDriverLINX andCloseDriverLINX function
calls. See “Selecting a DriverLINX Device Driver” on page 46 and “Close a Driver
in C/C++" on page 45.

Open a Driver with the Custom Control

To load and prepare a DriverLINX driver for application use with either the VBX or
OCX control, simply set thReq DLL_name property to the name of the desired
driver.

Close a Driver in C/C++

To stop all active tasks and unload a DriverLINX driver, call the following function:
VO D DLLAPI C oseDriverLI NX (const H NSTANCE hDLL);

Parameter Type/Description

hDLL HINSTANCE Specifies the instance handle returned by an
OpenDriverLINX call.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 45

Close a Driver with the Custom Control

To stop al active tasks and unload a DriverLINX driver, smply set the
Req DLL_name property to anull string.

Selecting a DriverLINX Device Driver

To specify which hardware to control, DriverLINX uses an addressing scheme that
consists of the following parts:

e Logical Driver—the DriverLINX software for one or more devices in a
manufacturer’s product family.

* Logical Device—the number you assigned to a particular physical
device during configuration.

* Logical Subsystem—the board’s hardware components the application
intends to use.

e Logical Channel(s)—the data channels of a subsystem that the
application intends to use.

Applications specify the Logical Device, Subsystem, and Channel in the Service
Request. DriverLINX uses the last driver the application opened or selected for the
Logical Driver address.

If your application is controlling multiple devices that use different DriverLINX
device drivers, then the application must select the correct DriverLINX Logical
Driver before sending it a Service Request or other command.

Selecting a Driver in C/C++

To select a DriverLINX Logical Driver, call the following function before calling
any other DriverLINX function:

HI NSTANCE DLLAPI Sel ect Dri ver LI NX (const HI NSTANCE hDLL);

Parameter Type/Description

hDLL HINSTANCE Specifies the instance handle returned by an
OpenDriverLINX call.

This function returns the “instance handle” of the last selected driver, if
SelectDriverLINX succeeds. If DriverLINX detects an error, SelectDriverLINX
returns zero.

Selecting a Driver with the Custom Control

The application should create at least one separate instance of the control for each
DriverLINX driver the application opens. See “Open a Driver with the Custom
Control” on page 45 for how to open a DriverLINX driver. The control instance will
automatically select the correct DriverLINX driver before sending any commands to
DriverLINX.

46 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Displaying the Edit Service Request Dialog

Applications can easily display the Edit Service Request property page at run time.

Most often you will find this a handy tool while you are developing and testing your
application, but you can also use it as a “hidden” feature for supporting problems
with a shipping product. Use this feature to

* experiment with different hardware capabilities,
» visually inspect how your application set up a Service Request,

« modify an incorrect property during testing without recompiling your
program,

e quickly learn how your application responds to different data-
acquisition rates or conditions,

e act as atemporary user interface before developing your own interface.

To pop-up theedit Service Request dialog, first initialize the Service Request for any
task of your choosing. Then set 8BIT flag. When your application calls
DriverLINX, it will display the dialog. When the user dismisses the property page,
DriverLINX will remove theEDIT flag and return a result code. If DriverLINX
returns no error, simply recall DriverLINX with the current Service Request to have
DriverLINX execute it. If DriverLINX returns an error, the user canceled=the
Service Request property page. Your application should probably not execute the
Service Request.

Display Edit Service Request Dialog Using C/C++

[REFRK KKk Kk Rk ok k ok ok ok Rk kkok ok kR kkok kR ARk k ok ok kR Xk kok ok k ok xk Kk

/1 Use this procedure to show Edit Service Request

//**

U NT ShowEdi t SR (LPServi ceRequest pSR)
{
/1 Caller sets up Service Request
pSR- >operation = (Ops) (pSR->operation | EDT);
/1 DriverLINX autonatically renpves EDIT fl ag
/] Caller can execute SRif there are no errors
return DriverLl NX(pSR);

}

Display Edit Service Request Dialog Using Visual Basic

Use this procedure to show Edit Service Request

Function ShowEdit SR (dl As DriverLI NXSR) As |nteger
Cal | er should set up Service Request
dl . Reqg_op_edit = DL_True
dl . Refresh

DriverLINX autonmatically renpbves Req_op_edit flag
Cal l er can execute SRif there are no errors

ShowEdi t SR = dl . Res_resul t
End Function

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 47

Reporting a DriverLINX Error

Applications can use DriverLINX to display a pop-up message box to the user
describing the error or result of the last DriverLINX Service Request. Simply replace
the value of the Operation property in the Service Request with the “MessageBox”
operation and resubmit the Service Request to DriverLINX.

The DriverLINX message box displays the error severity, subsystem, and error text.
Error severities are

e Warning—errors that do not result in failure of function, such as data
overruns.

* Abort—Requested function was not performed. No ongoing functions
were disturbed. Request may be repeated after correcting the error.

« Fatal—Request was terminated with an unrecoverable error and/or
data loss.

« Internal—Unexpected errors resulting from corruption of device driver
data or device driver programming errors.

See the on-lin®riverLINX Technical Reference Manual for a list of errors.

Display DriverLINX Message Box Using C/C++

[R R Kk ko ok ok ok ok ok ok ok ok ok ok kK ok ok ok sk K ok ok ok kK ok ok ok ok kK ok ok ok kK

/1 Use this procedure to display DriverLI NX messages

] R R K Kk kK ok ok ok ok kK ok ok ok ok kK ok ok ok kK ok ok ok kK ok ok ok kK Rk kK

U NT ShowDri ver LI NXMessage (LPServi ceRequest pSR)
{

/1 Assune caller passed an initialized Service Request
U NT | ast Op;

| ast Op = pSR->operati on; /'l save current operation
pSR- >oper ati on = MESSAGEBOX;

U NT result;
result = DriverLI NX(pSR);

pSR- >operation = (Ops)lastOp; // restore |ast operation code
return result;

48 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Display DriverLINX Message Box Using Visual Basic

Use this procedure to display DriverLl NX nessages

Function ShowDri verLl NXMessage(dl As DriverLI NXSR) As |nteger
DimlastOp As Integer
Wth dl
lastOp = . Reqg_op
. Req_op = DL_MESSAGEBOX
. Refresh
.Req_op = lastOp
ShowDr i ver LI NXMessage = . Res_result
End Wth
End Function

Stopping A DriverLINX Task

Applications can use a Service Request to stop arunning DriverLINX task.
Applications may need to stop atask that is running too long, that a user wantsto
abort, or that requires a software command to complete. For the counter/timer
subsystem, DriverLINX requiresthat al applications use a stop Service Request to
end polled tasks because DriverLINX cannot always detect task completion
automatically. DriverLINX can automatically terminate background tasks if the
Service Request contains a Stop Event that will eventually become true.

A Stop Service Request must To stop atask, change the Operation property of a currently running Service Request
have a valid taskld property to “STOP” and submit the Service Request to DriverLINX. If DriverLINX stops the
that identifies a previous task. task, it returns no error in thResult property. If the Service Request is not running
DriverLINX setstaskld in the when the application attempts to stop it, DriverLINX returns a “Service Request not
Service Request after found” error.

successfully starting a task.

Stopping a Task Using C/C++

[] R KKk ko kK k ok ok ok ok kR k ok ok kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok ok Rk k ok

/1 Use this procedure to stop any Servi ce Request

//***

U NT StopDriverLl NXTask (LPServiceRequest pSR)
{
/'l Use same Service Request from START conmand
/1 Change operation code
pSR- >oper ation = STOP;

/1 Call DriverLINX to perform Servi ce Request
return DriverLl NX(pSR);
}

Stopping a Task Using Visual Basic

Pokkkkkhkkhkkhhhhkhhkkhhkhhkhhhhkhhkhhkhkhhkhhhkhkhkhhkkk

Use this procedure to stop any Service Request

Pokkkhkhkkhkkhhkhhkhhkhhkhhkhhkhhkhhkhhkhkhhkhhhkhkhkkkkkk

Function StopDriverLl NXTask (dl As DriverLI NXSR) As |nteger
Use sane Service Request from DL_START conmand
Change operation code
Wth dl
. Req_op = DL_STOP
. Refresh
St opDri ver LI NXTask = . Res_result
End Wth
End Function

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 49

Initializing the Device

Deviceinitiaization is the first step that al applications should perform after loading
aDriverLINX driver. Deviceinitialization cancels al active Service Requests on the
device that the current process started and does a software reset of all subsystems.
Because DriverLINX supports sharing hardware devices among multiple processes,
the additional effects of device initiaization vary.

e |f theapplicationisthe only process using the device, DriverLINX
reconfigures and reinitializes the hardware to the user-defined state. If
you do not define initialization values for output ports, DriverLINX
writes zeros to output ports when the driver first loads and the last
known output value at any other Device Initialization.

* If multiple processes are sharing the device, DriverLINX does not
reconfigure or reinitialize the hardware state.

« |If another processis executing a Service Request on the device,
DriverLINX performsinitialization steps that will not interfere with the
other application and then returns a Device Busy error to app
reguesting initialization.

Edit Service Request E3
— Request
Device: Subsysten: hd ode: Operation:
Cancel |

IDevice a 'I

[Other =] |initialize x|
[T Audit anly Help... |

= EvEntE SElecte

Toinitialize adevice, set up the Service Request Group as follows:

Device Subsystem Mode Operation
<Logica Device> DEVICE OTHER INITIALIZE

The other properties of a Service Request are unused and should be set to zero.

50 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Initialize the Device Using C/C++

[] FEFK KKk Rk Kk ok ok ok ok Rk ok k ok ok ok Rk ok ok ok ok ok Rk k ok ok kR Rk ok ok ok ok ok kk ok

/1 Use this procedure to initialize the hardware

[] FEFK KKKk Rk ki ok ok ok ok Rk ok ok ok ok ok Rk ok ok ok ok ok Rk k ok ok kR Rk ok ok ok ok ok kk ok

U NT InitDriverLlI NXDevi ce (LPServiceRequest pSR, Ul NT Device)

{
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
DL_Set Ser vi ceRequest Si ze(*pSR) ;

pSR- >hWhd = Get Saf eHwnd() ;
pSR- >devi ce = Devi ce;

pSR- >subsyst em = DEVI CE;
pSR- >nbde = OTHER,

pSR- >operation = I NI Tl ALI ZE;

return DriverLl NX(pSR);

Initialize the Device Using Visual Basic

Use this procedure to initialize the hardware

Function InitDriverLl NXDevice(dl As DriverLlINXSR ByVal Device As
I nteger) As Integer
Wth dl
. Req_devi ce = Device
. Req_subsystem = DL_DEVI CE
. Req_npde = DL_OTHER
.Req_op = DL_I NI TI ALI ZE
" No events, buffers, channels needed
.Evt _Timtype = DL_NULLEVENT
.Evt_Str_type DL_NULLEVENT
.Evt_Stp_type DL_NULLEVENT
.Sel _buf_N=20
.Sel _chan_N =0
. Refresh
InitDriverLI NXDevice = .Res_result
End Wth
End Function

Initializing a Counter/Timer Subsystem

Applications may perform a subsystem initialization at any time to abort all
outstanding Service Requests that the calling process originally initiated. Usually
applications do not need to call this service.

Edit Service Request E

— Request

Devvice: Subzystem: kode: Operation:
y P Cancel |

IDeviceD ﬂ IEounterHtimEﬂ IDlher ﬂ IIniliaIize j
[Audit orily Help... |

= EvEntE SE[ECEEE

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX ¢ 51

Toinitialize a subsystem, set up the Service Request Group as follows:

Device Subsystem Mode Operation
<Logical Device> CT OTHER INITIALIZE

The other properties of a Service Request are unused and should be set to zero.

Initialize a Subsystem Using C/C++

[] FERE KKKk ok kK k ok ok ok ok Rk k ok ok kR Rk ok ok ok kR Rk ok ok ok kR Rk k ok ok kR Rk ok ok ok kR Rk ok ok ok ok Rk k ok

/1 Use this procedure to initialize the counter/timer subsystem
//***

U NT I nitCounterTiners (LPServiceRequest pSR, U NT Device)

{
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
DL_Set Ser vi ceRequest Si ze(*pSR) ;

pSR- >hWhd = Get Saf eHwnd() ;
pSR- >devi ce = Devi ce;

pSR- >subsyst em = CT,;

pSR- >nbde = OTHER,

pSR- >operation = I NI Tl ALI ZE;

return DriverLl NX(pSR);

Initialize a Subsystem Using Visual Basic

Use this procedure to initialize the counter/tiner subsystem

Function InitCounterTiners(dl As DriverLlI NXSR, ByVal Device As |nteger)
As | nteger
Wth dl
. Req_devi ce = Device
. Req_subsystem = DL_CT
. Req_npde = DL_OTHER
.Req_op = DL_I NI TI ALI ZE
" No events, buffers, channels needed
.Evt _Timtype = DL_NULLEVENT
.Evt_Str_type DL_NULLEVENT
. Evt _Stp_type DL_NULLEVENT
.Sel _buf_N=10
.Sel _chan_N =0
. Refresh
InitCounterTinmers = .Res_result
End Wth
End Function

Using Messages and Events

DriverLINX can report task information to your application using the Windows
messages or events. See “DriverLINX Events” on page 27 and the on-line
DriverLINX Technical Reference Manual for more information.

52 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Events for Foreground Tasks

For polled mode tasks, DriverLINX only reports ServiceStart and ServiceDone
events to your application. This provides consistency with the background tasks
modes so that if your application uses these events, itslogic is the same for
foreground and background modes.

If you are trying to use foreground tasksin afast loop and you are not using these
messages, you may wish to tell DriverLINX not to send these messages. This can
sometimes increase the speed of the loop.

Disable ServiceStart and ServiceDone Using C/C++

//**

/1 Use this procedure to disable SeviceStart and Servi ceDone
//**

voi d Di sabl eServi ceStart Done (LPServi ceRequest pSR)

/1 Caller sets up Service Request
pSR- >t askFl ags | = NO_SERVI CESTART | NO_SERVI CEDONE;

}

Disable ServiceStart and ServiceDone Using Visual Basic

Tokkkhkkhhkhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhkhhkhhkhkhhkhkhkhkhhkkhkhkkkkk

' Use this procedure to disable SeviceStart and Servi ceDone
R R Rk R S R R S R R

Sub Di sabl eServi ceStartDone (dl As DriverLlI NXSR)
" Caller sets up Service Request
Wth dl
. Sel _taskFl ags = . Sel _taskFl ags Or NO_SERVI CESTART O
NO_SERVI CEDONE
End Wth
End Sub

Events for Background Tasks

By default, DriverLINX sends background tasks ServiceStart and ServiceDone
messages and always sends Datal ost and Critical Error messagesif DriverLINX
detects any problems. DriverLINX only sends the other messages if the application
tells DriverLINX to do so.

Enable and Use Messages Using C/C++

Enable Optional M essages

[KRRk Kk ko ok ok ok ok ko ok ok ok kK ok ok ok kK K ok ok kK ok ok Rk ok kR ok kR Rk ok ok kR ok x

/'l Use this procedure to enable optional DriverLI NX messages

[KRRk Kk ko ok ok ok ok kK ok ok ok ok kK ok ok ok kK K ok ok ko ko Rk ko kR ok kR Rk ok ok kR ok x

voi d Enabl eAl | Events (LPServi ceRequest pSR)

/1 Caller sets up Service Request
if (pSR->| pBuffers)
PSR- >l pBuf fers->notify |= NOTIFY | NOTI FY_START | NOTI FY_STOP;

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 53

M essage Handling in C/C++ or MFC

//**

/1 C C++ procedure for using DriverLl NX nessages
//**

/1 Register custom DriverLlI NX nessage
U NT gDL_Msg = Regi st er W ndowMessage(DL_MESSAGE) ;

/'If you're using MFC, then add the following to your classes

/I message map:

// BEGIN_MESSAGE_MAP(XXX, yyy)

/I ON_REGISTERED_MESSAGE(gDL_Msg, OnDLMessage)

I/l END_MESSAGE_MAP()

"

/I Then change the function below to

/I LRESULT OnDLMessage (WPARAM wParam, LPARAM |Param)
/I and delete the line:

Il'if (message == gDL_MsgQ)

LRESULT OnDLMessage (HWND hWnd, UINT message,
WPARAM wParam, LPARAM IParam)

/I Was message posted by DriverLINX?
if (message == gDL_Msg)
switch (wParam) {
case DL_SERVICESTART:
break;
case DL_SERVICEDONE:
switch (getSubSystem(IParam)) {
case CT:
break;
} /I switch
break;
case DL_TIMERTIC:
break;
case DL_BUFFERFILLED:
break;
case DL_DATALOST:
break;
case DL_CRITICALERROR:
break;
} /I switch
return O;

}

Enable and Use Messages Using Visual Basic
Enable Optional Events

' Use this procedure to enable optional DriverLINX events

Sub EnableAllEvents (dI As DriverLINXSR)
' Caller sets up Service Request
With dl
If .Sel_buf N >0 Then
.Sel_buf_notify = .Sel_buf_notify Or DL_NOTIFY Or DL_NOTIFY_START
Or DL_NOTIFY_STOP
End If
End With
End Sub

Event Handling in Visual Basic

Visual Basic will automatically generate for al DriverLINX events empty
subroutines where you can add event-handling logic. See the on-line Driver LINX/VB
Technical Reference Manual for more details.

54 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Counter Output

Counter/timers generate an output signal when they reach their limit or rollover the
count value. When using the Am9513, the application can explicitly program how
the counter/timer channel signals the output terminal. The output mode for the 8254

is less flexible and dependent on the hardware’s counter mode. DriverLINX supports
the outputs shown in “Table 6 Allowed Values for Rate Event Output Property” on

page 25.

Applications can also select DriverLINX’s default output value for any counter/timer
channel. For every counter/timer mode, DriverLINX defines a default output value

as shown in the following table:

Generator Description Default Output

Intel 8254 | KPCI-3140{ Am9513
RateGen Periodic rate generator LoActive LoToggled | HiActive
SqWave Square wave generator HiToggled |LoToggled | Toggled
VDCGen Variable duty cyclerate LoToggled | HiToggled

generator
BurstGen Burst rate generator HiActive
Divider Frequency divider LoToggled [HiActive
Freq Frequency counter HiActive
Interval Interval timer HiActive
Count Event counter HiActive
Pulsewd Pulse width measurement HiActive
SplitClk Split frequency rate HiActive
generator

FskGen Frequency-shift keying Toggled
PulseGen Pulse generator LoToggled | Toggled
Retrig Retriggerable rate generator HiActive
RateGen
Retrig Retriggerable square wave Toggled
SgWave generator
Count32 32-bit event counter HiActive
Count64 64-bit event counter HiActive
Freq32 32-bit frequency counter HiActive
FregRatio Frequency ratio counter HiActive
OneShot One-shot pulse or strobe LoToggled [LoActive HiActive

(Mode0),

LoActive

(Mode5)
Retrig Retriggerable one-shot pulse | LoToggled HiActive
OneShot or strobe (Mode 1),

LoActive

(Mode 4)

Table 15 Default Counter/Timer Output Values

DriverLINX Counter/Timer User’s Guide

Programming Counter/Timers with DriverLINX « 55

Status Polling a Counter/Timer

Applications can monitor the current value and status of one or more counter/timer
channels using a Service Request. DriverLINX’s handling of status polling for
counter/timer subsystem depends on the type of task.

* In non-buffered, polled mode, DriverLINX returns the current counter
value and status in the Results Group of the Service Request.

* When using a buffered, polled group task, DriverLINX saves the
current counter value in the buffer for each Logical Channel in the

group.

« For buffered, interrupt tasks, DriverLINX returns the current buffer
number and the position of the next sample to write.

See “Converting Between Counts and Time” on page 58 for how to convert counts to
time.

Polling a Counter/Timer Using C/C++

//***
/1 Use this procedure to read a counter/tiner
//***
DWORD ReadCount er Ti nmer (LPServi ceRequest pSR, U NT* pResult)
{
Ul NT result;
/'l Use same Service Request froma Start Service Request
/1 Change operation code
pSR- >oper ati on = STATUS;
/1 Call DriverLINX to perform Service Request
result = DriverLI NX(pSR);
if (pResult)
*pResult = result;
if (result !'= NoErr)
return (DWORD) - 1;
if (pSR->status.u.tinerStatus.status == done)
St opDri ver LI NXTask(pSR) ;
/] Return current count
return pSR->status.u.tinerStatus. count;
}

56 ¢ Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Polling a Counter/Timer Using Visual Basic

Tokkkhkkhhkkhkhhhkhhkhhhkhhkhhkhhhkhkhhkhhkhkhkhhkhkhk*

Use this procedure to read a counter/tiner

Tokkkhkkhhkkhkhhhkhhkhhkhkhhkhhkhhhkhkhhkhhkkhkhhkhhkkhkhkk

Function ReadCounterTiner (dl As DriverLINXSR result As Integer) As
Long
Use sane Service Request froma Start Service Request
Wth dl
Change operation code
. Req_op = DL_STATUS
. Refresh
result = .Res_result
If .Res_result <> DL_NoErr Then
ReadCounterTiner = -1
Exit Function
End | f
End Wth

If dl.Res_Timstatus = DL_done Then
St opDri ver LI NXTask dl
End | f

Return current count
ReadCount er Ti mer = dl . Res_Ti m count
End Function

Configuring a Counter/Timer Channel

Applications can configure and arm a Logical Channel for a counter/timer without
actually starting atask on the counter/timer. Thisis useful for creating custom
counter/timer operations that use multiple counters and for pre-configuring several
counter/timer channels that you want to start simultaneously as a group. See
“Individual and Group Tasks” on page 29.

When an application configures a counter/timer, DriverLINX initializes the hardware
for the requested Logical Channel, but it does not start, or arm, the counter. To start a
previously configured counter, the application should add the Logical Channel to the
channel list of a group task. See “Controlling Group Tasks” on page 63.

To configure a counter/timer, set up the Service Request Group as follows:

Device Subsystem Mode Operation
<Logica Device> CT OTHER CONFIGURE

Set up the Events Group as follows:

Timing Start Stop

Rate None None

The properties of the timing event control how DriverLINX configures the hardware.
A CONFIGURE operation sets the mode of only one counter so, in general, the task-
oriented functions cannot be used for the mode. See “Hardware Reference” on page
113 Operating Modes for details on the available modes and the corresponding
hardware behavior.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX ¢ 57

Converting Between Counts and Time

DriverLINX expresses all time units as the number of tics of a board’s master clock.
ThePeriod andonCount properties of the Service Request as well as the counter
values DriverLINX returns are all in tic units. To make it easy for applications to
convert between tic units and seconds, DriverLINX supports two methods:

* Sec2Tics—converts time in seconds to hardware tic units.

* Tics2Sec—converts time in hardware tic units to seconds.

Time Conversion in C/C++

Sec?2Tics

This function converts the time in seconds for a counter/timer Logical Channel to
clock tics. The function syntax is

DWORD DLLAPI Sec?2Tics (U NT device, SubSystens subsystem U NT
Logi cal Channel, float secs);

This function returns the result in clock tic units as an unsigned 32-bit word. If the
function detects an error, it returns zero.

Parameter Type/Description

device WORD Specifiesthe Logical Device of the
counter/timer board.

subsystem SubSystems Specifies the counter/timer
subsystem.

Logica Channel UINT Specifiesthe Logical Channel of the

counter/timer. Symbolic values, e.g.,
DEFAULTTIMER, are acceptable.

Secs float Specifiesthe time value in seconds to
convert to tics.

Tics2Sec

This function converts the time in clock tics for a counter/timer Logical Channel to
seconds. The function syntax is

BOOL DLLAPI Tics2Sec (U NT device, SubSystens subsystem U NT
Logi cal Channel, DWORD tics, float* pFloat);

This function returns TRUE if the conversion was successful, otherwise it returns
FALSE. The function returns the converted result at pFloat.

Parameter Type/Description

device UINT Specifiesthe Logica Device of the
counter/timer board.

subsystem SubSystems Specifies the counter/timer
subsystem.

LogicalChannel UINT Specifiesthe Logical Channdl of the

counter/timer. Symbolic values, e.q.,

58 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

DEFAULTTIMER, are acceptable.

tics DWORD Specifies the counter/timer value
in hardware tics.

pFloat float* Specifies a 32-bit pointer to asinge-
precision floating-point variable where
DriverLINX stores the converted result in
seconds. If an error occurs, the value of this
field is undefined.

Time Conversion Using the Custom Control

For the 16-bit VBX, the following functions are DLL exports from
“DrvLnxVB.DLL". For the ActiveX controls, the functions are control methods.

DLSecs2Tics

This method converts the time in seconds for a counter/timer Logical Channel to
clock tics. The method syntax is

<control > DLSecs2Ti cs (ByVal Logical Channel As |nteger, ByVal secs As
Single) As Long

This method returns the result in clock tic units as a 32-bit integer. If the method
detects an error, it returns zero.

Parameter Type/Description

LogicalChannel Integer Specifiesthe Logica Channel of the
counter/timer. Symbolic values, e.g.,
DL_DEFAULTTIMER, are acceptable.

Secs Single Specifies the time value to convert in
seconds.

DLTics2Secs

This method converts the time in clock tics for a counter/timer Logical Channel to
seconds. The method syntax is

<control > DLTi cs2Secs (ByVal Logical Channel As Integer, ByVal tics As
Long) As Single

This method returns the converted time in seconds. If an error occurs, DriverLINX

returns 0.0.
Parameter Type/Description
Logica Channel Integer Specifiesthe Logical Channel of the
counter/timer. Symbolic values, e.g.,
DL_DEFAULTTIMER, are acceptable.
tics L ong Specifies the counter/timer valuein
hardware tics.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX ¢ 59

Using Background Tasks

DriverLINX can run counter/timer tasks in the background asynchronously
collecting data while the application processes other data in the foreground.
DriverLINX can support asynchronous mode only if the counter/timer board
supports interrupts, and you have configured the board to use an available interrupt.

Background, interrupt-driven tasks can either report an event to the application at
each interrupt or they can use a data buffer to collect samples at each interrupt.

Using a Counter/Timer to Generate Clock
Messages

DriverLINX can post a “timer tic” message or event to an application at each
interrupt by a counter/timer channel if the Service Request does not specify any data
buffers. See “DriverLINX Events” on page 27.

To start a counter/timer generating an interrupt, set up the Request Group in a
Service Request as follows:

Device Subsystem Mode Operation
<Logical Device> CT INTERRUPT START

Set up the Events Group as follows:

Timing Start Stop

Rate None None

Then set up the timing event using any of the single counter/timer Rate Events
described in this manual or in “Hardware Reference” on page 113 Operating Modes.

To create a simple, periodic clock on any available Logical Channel, use the
following setup for a Rate Event:

Mode Period Gate Pulses
RATEGEN period DISABLED 0

Note that Windows or your application cannot keep up with the highest interrupt rate
the counter/timer can generate. At moderately high rates, your application message
gueue may overflow and timer tics will be lost. At very high interrupt rates,

Windows will skip interrupts and may become very sluggish or unstable.

To create a single timer tic message after a known interval, use the following setup
for a Rate Event:

Mode Period Gate Pulses
ONESHOT period DISABLED 1

60 ¢ Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Note that the counter/timer hardware design only allows DriverLINX to support
timer tics on one running counter/timer at atime.

Storing the Counter/Timer Value at Each Interrupt

DriverLINX can store the current value of a counter/timer into a memory buffer at
each interrupt.

Note that Windows or your application cannot keep up with the highest interrupt rate
the counter/timer can generate. At high interrupt rates, Windows will skip interrupts
and may become very sluggish or unstable.

To start a counter/timer generating an interrupt, set up the Request Group in a
Service Request as follows:

Device Subsystem Mode Operation
<Logica Device> CcT INTERRUPT START

Set up the Events Group as follows:

Timing Start Stop

Rate or Command or Terminal Count or

Digital Digital Command or
Digital

The Timing Event specifies the pacing or interrupt source.

* Rate Events use a counter/timer channel to generate an interrupt source.
Use any of the single counter/timer modes described in “Hardware
Reference” on page 113 Operating Modes.

« Digital Events use the hardware’s external interrupt input line as the
interrupt source. See “Using the External Interrupt Input Line” on page
62.

To create a simple, periodic clock on any available Logical Channel, use the
following setup for a Rate Event:

Mode Period Gate Pulses
RATEGEN period DISABLED 0

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 61

DriverLINX can optionally
post “buffer filled” messages
to the application as
DriverLINX completes
processing each buffer. See
“DriverLINX Events” on
page 27.

DriverLINX has no software
control over the CTM'’s
external interrupt enable
input.

The Start and Stop Events determine when the DriverLINX task starts and stops
saving counter values at each interrupt.

e Command—starts or stops the task on software command.

» Digital—starts or stops the task when the masked digital input satisfies
the pattern matching condition in the event. See “Using Digital Start
and Stop Events” on page 63.

e Terminal Count—stops the task DriverLINX has filled the buffers
with count values once.

To start or stop data transfer on software command, use Command Events for the
Start or Stop Event. If you use a Stop Command or Digital Event, after DriverLINX
finishes processing the last buffer, it will automatically start writing data again into
the first buffer. With a Stop Command, DriverLINX will acquire data until the
application resets the Service Reque®psration property to Stop and resubmits
the Service Request to DriverLINX.

Select Buffers

Set the number of Buffers between 1 and 255 an8iffer Sze property to the

number of bytes to transfer. Buffers must contain an integral multiple of the total
number of channels specified in the Service Request. DriverLINX can optionally
post “buffer filled” messages to the application as DriverLINX completes processing
each buffer. See “DriverLINX Events” on page 27.

Using the External Interrupt Input Line

Use aDigital Timing Event to tell DriverLINX which external hardware input
source to use for the interrupt. DriverLINX models the external hardware interrupt
lines as 1-bit digital input ports. Set up the Digital Event as follows:

Channel Mask Match Pattern
<external interrupt <input linesto test> | FALSE or “not 0
channel> equal”

» For the Channel, either specify the Logical Channel DriverLINX has
assigned as the external interrupt input line (see the Logical Device
Descriptor) or use a hardware-independent, symbolic Logical Channel,
DI_EXTCLK. DriverLINX automatically replaces this value with the
correct hardware channel when the app sends the Service Request to
DriverLINX.

* Usethe Mask property to indicate which line(s) to enable for interrupts.
Most boards only support one external interrupt line so use avalue of 1.

* Set the Match and Pattern properties to “not equal zero”. This specifies
that a rising edge at any input will trigger the interrupt. Other values for
these properties will generate an error.

62 « Programming Counter/Timers with DriverLINX

DriverLINX Counter/Timer User’s Guide

Using Digital Start and Stop Events

DriverLINX can optionally To start or stop data transfer when a certain condition occurs on adigital input

post “start trigger” and “stop channel, use a Digital Event for the Start or Stop Event. At each interrupt,

trigger” messages to the DriverLINX tests the requested Logical Channel for the trigger event. If DriverLINX
application. See the on-line detects the start trigger, it starts processing the data buffers immediately. After
DriverLINX Technical processing one sample or scan, DriverLINX tests for the stop trigger event, and, if

Reference Manual for more found, stops processing dataimmediately. Note that a digital input may change value
information about messages. between the time the interrupt occurs and when DriverLINX reads the Logical
Channel for atrigger.

Set up aDigital Event as follows:

Channel Mask Match Pattern
<Logica Channel> | <input linestotest> | 0- “not equal” or <pattern to match>
1-"“equal”

« For the Channel property, specify the Logical Channel for any digital

input port.
« Usethe Mask property to select which input bitsto test as adigital
trigger.
« Usethe Match property to select how DriverLINX tests for adigital
trigger.
* Usethe Pattern property to specify the bits DriverLINX uses for
comparison.
DriverLINX supports two types of digital triggers tests based on the value of the
Match property.
Match Value Trigger Test
0 — Not Equals ChanndélND Mask!= Pattern
1 — Equals ChanndiND Mask == Pattern

With a Stop Digital Event, DriverLINX will terminate acquisition either when the
digital input value satisfies the digital trigger condition or when the application sends
a stop operation.

If the Delay property of aDigital Event is not zero, DriverLINX will not trigger the

event until it has counted the number of additional interrupts the app specified in the

Delay property. As a specia case, if the stop Delay property has the maximum count,
DriverLINX treats this event as “stop on command”, but it will send a message to the
application each time it detects the stop event.

Controlling Group Tasks

Group tasks give your application more control over the counter/timer subsystem. It
can configure counter/timers in any basic mode that the hardware supports, and start
or stop multiple counter/timers at the same time. You can create polled mode groups
and interrupt mode groups. For polled mode groups, DriverLINX starts or stops all
counter/timers at the same time. Applications can poll the status of counter/timers in

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 63

Soecify the number of

channels as 2, not the number
of channels in the consecutive

sequence.

the group while the task is running. For interrupt mode groups, DriverLINX also
starts or stops all counter/timers at the same time, but DriverLINX writes the current
counter/timer values into a buffer at each interrupt. The trade-off is that your
application must perform its own analysis of the buffers as DriverLINX cannot
discern the aggregate function of your group task.

To use agroup task, you must first individually configure the counter/timers you

wish to use in agroup. To configure a Logical Channel, you set up the Logical

Channel with the same properties you would normally use for a basic counter/timer

task, but you must change the Operation property from “Start” to “Configure”. See
“Configuring a Counter/Timer Channel” on page 57 and “Hardware Reference” on
page 113 Operating Modes.

To designate Logical Channels as members of a group, set up a Service Request and
use the Select Channels Group to specify the Logical Channels in the group.

Select Channels

To tell DriverLINX which Logical Channels are members of the group task, use the
Select Channels Group properties. You can specify a group consisting of a single
channel, a range of channels, or a list of channels.

To set up the Select Channels Group for one Logical Channel:

Number of channels Start Channel Format

1 <Logica Channel> native

To set up the Select Channels Group for a consecutive range of channels:

Number of Start Channel Stop Channel Format
channels
2 <Logica Channel> | <Logical Channel> | native

DriverLINX scans all channels between the starting and stopping channel. If the
starting channel is greater than the stopping channel, the channel sequence wraps
around at the highest Logical Channel and continues from zero.

To set up the Select Channels Group for a random channel list:

Number of Channel; Gain, Format
channels
<sizeof list> <Logica Channe> |0 native

DriverLINX can transfer one Logical Channel at each interrupt or transfer all the
specified Logical Channels (a scan) at each interruptSrhdtaneous property

tells DriverLINX to transfer either one channel (unchecked or false) or all channels
(checked or true) at each interrupt. Most counter/timer hardware does not support
true simultaneous transfers, so DriverLINX rapidly reads each channel in a loop.

64 « Programming Counter/Timers with DriverLINX

DriverLINX Counter/Timer User’s Guide

In a preemptive multitasking
system, the delay between
two instructions can vary
significantly and
unpredictably.

Polled Mode Groups

For a polled mode group, DriverLINX ideally starts or stops all counter/timersin the
group using a single hardware operation. However, some hardware does not support
thisfor all Logical Channels. The CTM-10 uses one Am9513 chips to control
Logical Channels 0 to 4 and another chip for Logical Channels 5 to 9. In this case,
DriverLINX must use two separate instructions to control each chip. For boards that
use an 8254 chip, DriverLINX must use a separate instruction for each Logical
Channel.

To start a polled mode group, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logica Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop

None None None

The Service Request needs no Timing Event as each counter/timer in agroup runs
independently. See “Select Channels” on page 64 for how to specify the Logical
Channels for a group.

If you need to read the current counter values of channels in a group, set up a single
buffer with one sample for each Logical Channel in the Service Request. When your
application performs status polling with the Service Request (see “Status Polling a
Counter/Timer” on page 56), DriverLINX will store the current counter value of

every channel in the Service Request into the buffer rather than returning a single
value in the Service Request. If your application does not need status polling, set the
number of buffers to zero in the Service Request.

Starting a Polled Mode Group Using C/C++

Note that the following C example will cause memory leaks unless the calling
application takes responsibility for freeing the following memory after stopping the
Service Request for the group task:

e Channel Gain List in the Service Request
« Buffer List in the Service Request

» Buffers in the Service Request’s Buffer List

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 65

//***

/1 Use this procedure to start a polled npde group task

[FERE KKKk kR k ok ok ok ok Rk ok kok kR Rk ok kok ok k Rk ok k ok ok ok Rk ok ok ok kR Rk ok ok ok ok ok k ok

U NT StartPol | edG oup (LPServiceRequest pSR,
U NT Logi cal Devi ce,
U NT nChannel s,
int channel s[])

/1 Set up Service Request to performtask

/1 First zero Service Request structure
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
/] Then initialize structure size

DL_Set Ser vi ceRequest Si ze(*pSR) ;

/1 Set up Request Group of Service Request
pSR- >hWwhd = Get Saf eHwnd() ;

pSR- >devi ce = Logi cal Devi ce;

pSR- >subsyst em = CT,;

pSR- >nbde = POLLED,

pSR- >oper ati on = START,

/1 Set up channel Iist
pSR- >channel s. nChannel s = nChannel s;
i f (pSR->channel s. nChannel s) {
pSR- >channel s. chanGai nLi st =
(LPCHANGAI N) mal | oc(nChannel s * si zeof (CHANGAI N)) ;
/1 N.B. Caller nust free this nenory
i f (pSR->channel s. chanGai nLi st)
/| Zero structure
nenset (pSR- >channel s. chanGai nLi st, 0,
pSR- >channel s. nChannel s * si zeof (CHANGAI N)) ;

el se
pSR- >channel s. nChannel s = 0;
for (UNT i = 0; i < pSR>channels.nChannels; ++i) {
pSR- >channel s. chanGai nLi st[i].channel =
(SI NT) channel s[i];
pSR- >channel s. chanGai nLi st[i] . gai nOr Range = 0;
Yy /1 for

}

/1 Set up optional buffer list for status readback
/1 A buffer list isn't required if you don't need
/1 per channel status info
i f (pSR->channel s. nChannel s) {
pSR- >| pBuf fers = (LPBUFFLI ST) mal | oc(DL_BufferListBytes(1));
/1 N.B. Caller nust deallocate buffer list nenory
if (pSR->l pBuffers) {
/|l Zero structure
menset (pSR- >l pBuf fers, 0, sizeof (DL_BUFFERLIST));
pSR- >l pBuf fers->nBuffers = 1,
/1 Always use 1 buffer for status polling
/1 Alocate 1 el ement per channel
pSR- >| pBuf f er s- >buf fer Si ze =
si zeof (WORD) * pSR- >channel s. nChannel s;
/1 Let DriverLINX allocate nenory for data-acq buffers
pSR- >| pBuf f er s- >Buf f er Addr[0] =
Buf Al | oc(GBUF_POLLED, pSR->| pBuffers->bufferSize);
/1 N.B. Caller nust deallocate buffer nenory using BufFree
Y oILoif
YILif

/1 Call DriverLINX to perform Service Request
return DriverLl NX(pSR);
}

66 ¢ Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

In a preemptive multitasking
system, the delay between
two instructions can vary
significantly and
unpredictably.

Starting a Polled Mode Group Task Using Visual Basic

Tokkkhkkhkhhkhhhkhhkhhkhhhkhhkhhhhhkhhkhh kb hkhhkhhhhkhkhhkhkhkhkhkkkk

" Use this procedure to start a polled node group task
LR R
Function StartPol |l edGoup (dl As DriverLlI NXSR ByVal Logical Device As
I nteger, ByVal nChannels As Integer, Channels() As Integer) As Integer
" Set up Service Request to performtask
Dimi As |Integer
Wth dl
. Req_devi ce = Logi cal Devi ce
. Req_subsystem = DL_CT
. Req_node = DL_POLLED
. Req_op = DL_START

" Events are not required

.Evt _Timtype = DL_NULLEVENT
.Evt_Str_type DL_NULLEVENT
. Evt _Stp_type DL_NULLEVENT

' Set up optional buffer list for status readback
A buffer list isn't required if you don’t need
per channel status info

.Sel _buf_N=1

. Sel _buf _sanpl es = nChannel s

Set up channel i st
. Sel _chan_format = DL_t NATI VE
. Sel _chan_N = nChannel s
For i = 0 to nChannels - 1
.Sel _chan_list(i) = Channels(i)
. Sel _chan_gai nCodeList(i) = 0
Next i

. Refresh
StartPol | edG oup = . Res_result
End Wth
End Function

Interrupt Mode Groups

For an interrupt mode group, DriverLINX ideally starts or stops all counter/timersin
the group using a single hardware operation. However, some hardware does not
support this for all Logical Channels. The CTM-10 uses one Am9513 chipsto
control Logical Channels 0 to 4 and another chip for Logical Channels5to 9. In this
case, DriverLINX must use two separate instructions to control each chip. For
boards that use an 8254 chip, DriverLINX must use a separate instruction for each
Logical Channel.

To start an interrupt mode group, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logica Device> CT INTERRUPT START

Set up the Events Group as follows:

Timing Start Stop

Digital or Command or Command or

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 67

Rate

Digital

Digital or
Terminal Count

DriverLINX usesthe Timing Event as the interrupt source that it usesto read the
current counter value of each counter/timer in the channel list into the data buffers. If
you wish to also read the current value of the interrupt counter/timer, include its
Logical Channel number in the channel list for the Service Request. See “Select
Channels” on page 64 for how to specify the Logical Channels for a group.

To use the external interrupt input line, see “Using the External Interrupt Input Line”

on page 62.

See “Using Digital Start and Stop Events” on page 63 for how to set up the Start and

Stop Events for an interrupt group task.

Using Digital 1/O Tasks

Reading or Writing a Single Digital Value

Applications can read or write a single value for a digital port using a Service

Request for the digital input or output subsystem.

Edit Service Request

— Request

Device:

Subsystem; tode:

O peration:
[Device0 | |Digitalinput =] Polled =] |Stat] Cancl |

[Audit only Help... |

— Events Select >
€ Timing > € Start 3> " Stop 3> :
Mone j INnne j INone j © Buffers
) Flage
— Select Channels
Channel ID j Gain:l ﬂ Tham 0 Earmiat: et
@ Single Bl I ﬂ I ﬂ
" Start/Stop] s
I Deler Ul bETHE DS
' LList il

To transfer a single value, set up the Request Group as follows:

Device Subsystem Mode Operation
<Logical Device> <Digital Subsystem> | POLLED START
Set up the Events Group as follows:
Timing Start Stop
None None or None or
Command Termina Count

68 ¢« Programming Counter/Timers with DriverLINX

DriverLINX Counter/Timer User’s Guide

For a Start Event, None and Command are equivalent for a Start Event as are None
and Terminal Count for a Stop Event. Start on Command and stop on Terminal
Count tells DriverLINX to transfer the data once.

Select Channels
Set up the Select Group Channels as follows:

Number of channels Start Channel Format
1 <Logica Channel> native
Select Buffers

Single-value transfers use ioValue property in the Service Request instead of a buffer
to hold the data. Set the number of Buffersto zero. For output, assign the value to
write to the ioValue property in the Results Group. For input, read the input from the
ioValue property after executing the Service Request.

To write asingle value, set up the Status Group of the Service Request as follows:

Type ioValue
IOVALUE <value>

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 69

Read or Write a Single Value Using C/C++
Writea Single Value

[KR Kk Kk ko ok ok ok ok kK ok ok ok kK ok ok ok ok kK ok ok ok kK ok ok ok kK

/1 Use this procedure to wite a single value
/1 to a specific channel

[KR K Kk ko ok ok ok ok kK ok ok ok kK ok ok ok kK ok ok ok kK ok ok kK

U NT WiteChannel (LPServiceRequest pSR, U NT Devi ce,
U NT Channel, DWORD Val ue)
{

nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
DL_Set Ser vi ceRequest Si ze(*pSR) ;

pSR- >hWwhd = Get Saf eHwnd() ;
pSR- >devi ce = Devi ce;

pSR- >subsystem = DG,

pSR- >nbde = POLLED,

pSR- >oper ati on = START,;

pSR- >channel s. nChannel s = 1;
pSR- >channel s. chanGai n[0] . channel = Channel ;

pSR->st at us. typeStatus = | OVALUE;
pSR- >st at us. u. i oVal ue = Val ue;

return DriverLl NX(pSR);
}

Read a Single Value

[KR Kk Kk ko ok ok ok ok kK K ok ok ok ok ok ok kR ok kR Rk ok ok ok kK k

/1 Use this procedure to read one val ue
/1 froma specific channel

[KRRk Kk ko ok ok ok ok kK K ok ok ok ok kK kR ok kR Rk ok ok ok Rk ok

DWORD ReadChannel (LPServiceRequest pSR, U NT Device, U NT Channel,
U NT* pResult)
{

nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
DL_Set Ser vi ceRequest Si ze(*pSR) ;

pSR- >hWhd = Get Saf eHwnd() ;
pSR- >devi ce = Devi ce;

pSR- >subsystem = DI ;

pSR- >nbde = POLLED,

pSR- >oper ati on = START,

pSR- >channel s. nChannel s = 1;

pSR- >channel s. chanGai n[0] . channel = Channel ;
U NT result;
result = DriverLI NX(pSR);
if (pResult)
*pResult = result;
if (result !'= NoErr)

return (DWORD)-1;

return pSR->status. u.ioVal ue;

70 « Programming Counter/Timers with DriverLINX

DriverLINX Counter/Timer User’s Guide

Read or Write a Single Value Using Visual Basic
Writea Single Value

Use this procedure to wite one sanple
" to a specific channel

Function WiteChannel (dl As DriverLlI NXSR, ByVal Channel As I|nteger,
ByVal Value As Integer) As |Integer
Di m Res%
Wth dl
. Req_subsystem = DL_DO
. Req_node = DL_POLLED
. Req_op = DL_START

.Evt _Timtype = DL_NULLEVENT
.Evt _Str_type = DL_NULLEVENT
.Evt _Stp_type = DL_NULLEVENT

.Sel _buf_N=10
. Sel _chan_format = DL_t NATI VE
.Sel _chan_N =1
. Sel _chan_start = Channel
.Res_Sta_ioVal ue = Val ue
. Refresh
WiteChannel = .Res_result
End Wth
End Function

Read a Single Value

Use this procedure read one sanpl e
" froma specific channel

Functi on ReadChannel (dl As DriverLlI NXSR, ByVal Channel As I|nteger,
result As Integer) As |Integer
" Set up for polled digital input of 1 sanple
Wth dl
. Req_subsystem = DL_DI
. Req_npde = DL_POLLED
. Req_op = DL_START

.Evt _Timtype = DL_NULLEVENT
.Evt _Str_type = DL_NULLEVENT
. Evt _Stp_type = DL_NULLEVENT

.Sel _buf_N=10
.Sel _chan_format = DL_t | NTEGER
.Sel _chan_N =1
. Sel _chan_start = Channel
. Refresh
result = .Res_result
End Wth
If dl.Res_result = DL_NoErr Then
ReadChannel = dl.Res_Sta_ioVal ue
End I f
End Function

DriverLINX Counter/Timer User’s Guide

Programming Counter/Timers with DriverLINX « 71

Reading or Writing Specific Digital Bits

Applications can write specific bitsto adigital port using a Digital Event to supply a
bit mask. Use this technique to set single bitsin an output port or to share an output
port between threads or processes.

Edit Service Request E2
— Request
Device: Subsystem; tode: Operation;
Cancel |

IDeviceD j IDigitaI input j IF'DIIEI:I j IStalt j
[Audit only Help... |

— Events Select >
€ Timing > Lol " Stop >
— = - gz " Channels
More j IDigitaI j ITerminaI cnunlj " Bulfers
Dela_l,J:IEI 3:) Elags
— Diigital Ewvent
Channel: M azk: » Bk Pattern:
~| AMD |Bi - I
ID J IBIH:I J £+ Nat equals 0

Setting up masked /O is similar to single value transfers. First, set up the Request
Group asfollows:;

Device Subsystem Mode Operation
<Logical Device> <Digital Subsystem> | POLLED START

Set up the Events Group as follows:

Timing Start Stop

None Digital None or
Terminal Count

For a Stop Event, None or Terminal Count are equivalent.
Start Event
Set up the Digital Event as follows:

Channel Mask Match Pattern
<Logica Channel> | <bit mask> <unused> <unused>

DriverLINX composes the new output value for the port as

new value = (old value AND NOT Mask) OR (user value AND Mask).

72 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Select Channels
Set up the Select Group Channels as follows;

Number of channels Start Channel Format
1 <Logica Channel> native
Select Buffers

Single-value transfers use ioValue property in the Service Request instead of a buffer
to hold the data. Set the number of Buffersto zero. For output, assign the value to
write to the ioValue property in the Results Group. For input, read the input from the
ioValue property after executing the Service Request.

To write asingle value, set up the Status Group of the Service Request as follows:

Type ioValue

IOVALUE <vaue>

Write a Masked Value Using C/C++

//***

/1 Use this procedure to read one value froma specific

/'l channel
//***

U NT WiteBits (LPServiceRequest pSR, U NT Device, U NT Channel, U NT

Val ue, U NT Mask)

{
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
DL_Set Servi ceRequest Si ze(*pSR) ;

pSR- >hWwhd = Get Saf eHwnd() ;
pSR- >devi ce = Devi ce;

pSR- >subsyst em = DG,

pSR- >nbde = POLLED,

pSR- >oper ati on = START,;

pSR->start.typeEvent = DI EVENT;
pSR->start. u. di Event.channel = Channel;
pSR->start. u. di Event. mask = Mask;
pSR->start. u.di Event. match = FALSE;
pSR->start. u.di Event.pattern = O;

pSR- >channel s. nChannel s = 1;
pSR- >channel s. chanGai n[0] . channel = Channel ;

pSR->st at us. typeStatus = | OVALUE;
pSR- >st at us. u. i oVal ue = Val ue;

return DriverLl NX(pSR);

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX « 73

Write a Masked Value Using Visual Basic

Function WiteBits(dl As DriverLlINXSR ByVal Channel As I|nteger,
Val ue As Integer, ByVal Mask As Integer)As I|nteger
Set up for polled digital output of 1 sanple
Wth dl
. Req_subsystem = DL_DO
. Req_node = DL_POLLED
. Req_op = DL_START
.Evt _Timtype = DL_NULLEVENT
.Evt _Str_type = DL_DI EVENT
. Evt _Str_di Channel = Channel
. Evt _Str_di Mask = Mask
. Evt _Str_di Match = DL_Not Equal s
.Evt_Str_diPattern = 0
.Evt _Stp_type = DL_NULLEVENT
.Sel _buf_N=20
. Sel _chan_format = DL_t NATI VE
.Sel _chan_N =1
. Sel _chan_start = Channel
.Res_Sta_ioVal ue = Val ue
. Refresh
WiteBits = .Res_result
End Wth
End Function

By Val

74 « Programming Counter/Timers with DriverLINX

DriverLINX Counter/Timer User’s Guide

Rapidly Transferring a Block of Digital Data

Applications can rapidly transfer a single data buffer of valuesto or from a digital
I/0O port using the computer’s block 1/0 hardware instructions. Note that not all
hardware boards are able to sustain the 1/O transfer rate on faster computers.

Edit Service Request
— Request
Device: Subsysten: hd ode: Operation:
Cancel
IDeviceD ﬂ IDigilaI input j IF'-:nIIed j IStart ﬂ _I
[T Audit anly Help... |
— Ewents Select >
 Timing > Start > " Stop s
—mnd — =F " Channels
Nore [xffwene x| Nene =] | e i
) Flags
— Select Buffers
Samples: |5EIEI MNumber: |1 VI = Wty
[T Auto-allocate

To transfer a buffer, set up the Request Group as follows:

Device Subsystem Mode Operation
<Logical Device> <Logical POLLED START
Subsystem>
Set up the Events Group as follows:
Timing Start Stop
None None or None or
Command Terminal Count

For a Start Event, None and Command are equivalent for a Start Event as are None
and Terminal Count for a Stop Event. Start on Command and stop on Terminal

Count tells DriverLINX to transfer the data in buffer once.

Select Channels

Set up the Select Group Channels as follows:

Number of channels

Start Channel

Format

1

<Logica Channel>

native

DriverLINX Counter/Timer User’s Guide

Programming Counter/Timers with DriverLINX « 75

Select Buffers

Set the number of Buffers to one and the Buffer Sze to the number of bytesto
transfer.

Read or Write a Single Buffer Using C/C++

Read One Buffer

//**********************************

/1 Use this procedure to read a data

/1 array froma specific channel
//**********************************

U NT ReadChannel Buff (LPServiceRequest pSR, U NT Device, U NT Channel,
PVO D Buffer, DWORD Lengt h)
{

nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
DL_Set Ser vi ceRequest Si ze(*pSR) ;

pSR- >hWhd = Get Saf eHwnd() ;
pSR- >devi ce = Devi ce;

pSR- >subsystem = DI ;

pSR- >nbde = POLLED,

pSR- >oper ati on = START,

pSR- >channel s. nChannel s = 1;
pSR- >channel s. chanGai n[0] . channel = Channel ;

pSR- >| pBuf fers = (LPBUFFLI ST) mal | oc(DL_Buf ferListBytes(1));
/1 N.B. Caller nust deallocate buffer list nenory
if (!pSR->| pBuffers)

return Error(Abort, BufAllocErr);

pSR- >l pBuf fers->nBuffers = 1;
pSR- >| pBuf f er s- >buf fer Si ze = Lengt h;
pSR- >| pBuf f er s- >Buf f er Addr[0] = Buffer;

return DriverLl NX(pSR);

76 + Programming Counter/Timers with DriverLINX

DriverLINX Counter/Timer User’s Guide

Write One Buffer

//***********************************

/1 Use this procedure to wite a data

I/ array to a specific channel
//***********************************

U NT WiteChanBuf (LPServiceRequest pSR, U NT Device, U NT Channel,
PVO D Buf fer, DWORD Lengt h)
{

nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
DL_Set Ser vi ceRequest Si ze(*pSR) ;

pSR- >hWhd = Get Saf eHwnd() ;
pSR- >devi ce = Devi ce;

pSR- >subsyst em = DG,

pSR- >nbde = POLLED,

pSR- >oper ati on = START,

pSR- >channel s. nChannel s = 1;
pSR- >channel s. chanGai n[0] . channel = Channel ;

pSR- >| pBuf fers = (LPBUFFLI ST) mal | oc(DL_Buf ferListBytes(1));
if (!pSR->| pBuffers)
return Error(Abort, BufAllocErr);

pSR- > pBuf f ers->nBuffers = 1;
pSR- >| pBuf f er s- >buf fer Si ze = Lengt h;
pSR- >| pBuf f er s- >Buf f er Addr[0] = Buffer;

Ul NT result;
result = DriverLlI NX(pSR);

if (pSR->I pBuffers) {

free(pSR->l pBuffers);
pSR- >l pBuf fers = 0;

return result;

DriverLINX Counter/Timer User’s Guide

Programming Counter/Timers with DriverLINX « 77

Read or Write a Single Buffer Using Visual Basic
Read One Buffer

Use this procedure to read one buffer froma
" specific channel.

Functi on ReadChannel Buf f (dl As DriverLlI NXSR, ByVal Channel As |nteger,
Buffer() As Byte, ByVal Length As |nteger)As Integer
" Set up for polled digital input
Wth dl
. Req_subsystem = DL_DI
. Req_node = DL_POLLED
. Req_op = DL_START

.Evt _Timtype = DL_NULLEVENT
.Evt _Str_type = DL_NULLEVENT
.Evt_Stp_type = DL_NULLEVENT

.Sel _buf_N=1
. Sel _buf _size = dl.DLSanpl es2Byt es(Channel , Length)
.Sel _chan_format = DL_t| NTEGER
.Sel _chan_N =1
. Sel _chan_start = Channel
. Refresh
ReadChannel Buff = . Res_result
End Wth
If dl.Res_result = DL_NoErr Then
Di m dummy As | nt eger
dummy = . VBArrayBufferXfer(0, Buffer, DL_BufferToVBArray)
End | f
End Function

Write One Buffer

Use this procedure wite an integer data
" array to a specific channel

Function WiteChanBuf (dl As DriverLlI NXSR, ByVal Channel As I|nteger,
Buffer() As Byte, ByVal Length As Integer)As |nteger
Dim | As Integer, dummy As |nteger
Wth dl
. Req_subsystem = DL_DO
. Req_npde = DL_POLLED
. Req_op = DL_START

.Evt _Timtype = DL_NULLEVENT
.Evt _Str_type = DL_NULLEVENT
. Evt _Stp_type = DL_NULLEVENT

.Sel _buf_N=1
. Sel _buf_size = dl.DLSanpl es2Byt es(Channel , Length)
dummy = . VBArrayBufferXfer(0, Buffer, DL_VBArrayToBuffer)
. Sel _chan_format = DL_t NATI VE
.Sel _chan_N =1
. Sel _chan_start = Channel
. Refresh
WiteChanBuf = .Res_result
End Wth
End Function

78 « Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’'s Guide

Using Task-Oriented Functions

DriverLINX's Task-Oriented Functions

DriverLINX defines several useful task-oriented counter/timer functions that can be
support on most counter/timer hardware. These tasks define common counter/timer
functionsin generic terms so they are portable across data-acquisition boards with
similar features. Using one of these tasks makes your application independent of the
particular counter/timer chip aboard uses.

Event Counting

Event counting is the simplest counter/timer function. The counter/timer counts
source edges at the Clock input and the application reads the current count value. In
polled mode, the application reads the count value by using Status commands.

LI Cclock
Event

Output
Gate Counter P
Figure 2 Event Counting

Each Am9513 chip has five DriverLINX supports 16-, 32-, and 64-bit wide countersusing 1, 2, or 4
counter/timer channels. When counter/timer channels, respectively. When using multiple counter/timer channels,
advancing to the next higher the application’s Service Request specifies the counter/timer channel where the user
channel, the hardware wraps has attached the input source, and DriverLINX then automatically uses consecutive
around fromthe last to first counter/timer channels for the high-order count.

channel.

Starting an Event Counter

To start a software-polled event counter, set up the Request Group as follows:

Device Subsystem Mode Operation
<Logica Device> CT POLLED START

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 79

You can determine the first
overflow by physically
connecting a toggled Output
to adigital input and polling
the digital input.

DriverLINX’s default output
value for all event counters is
active-high terminal count
pulse.

Set up the Events Group as follows:

Timing Start Stop
Rate None or None or
Command Terminal Count

To set up the Timing Event, see “Specifying the Rate Event for Event Counting” on
page 80. DriverLINX does not need Start or Stop events for event counting, but the
application may optionally specify Command and Terminal Count for Start and Stop
events, respectively. For a Service Request that does not specify data buffers, None
and Command are equivalent for a Start Event as are None and Terminal Count for a
Stop Event.

Specifying the Rate Event for Event Counting

DriverLINX supports repetitive and non-repetitive event counting with several
gating options as shown in the following tables for 16-, 32-, and 64-bit counting.
When repetitive counters reach the maximum count, they wrap around to zero and
continue counting without any indication of overflow. When non-repetitive counters
reach the maximum count, they wrap around to zero and stop with a count of one.

To set up an event counter, select the type of counter from the following tables and
program the Rate Generatopropertiesin a Service Request as specified. Unused or
unspecified properties should be set to zero. Applications can set the Rate
Generator'Qutput property to any value. See “Counter Output” on page 55.

Am9513

In the following tables, the Am9513 Mode column refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

80 ¢ Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

16-bit Am9513| Channel | Mode |Clock Gate Pulses
Counting | Mode

Repetitive | D N COUNT | <source> | DISABLED |0
counting
with no
hardware
gating

Non- A N COUNT | <source> | DISABLED |1
repetitive
counting
with no
hardware
gating

Repetitive | E N COUNT | <source> | level 0
counting
with level
gating

Non- B N COUNT | <source> | level 1
repetitive
counting
with level
gating

Repetitive | F N COUNT | <source> | edge 0
counting
with edge
triggering

Non- C N COUNT | <source> | edge 1
repetitive
counting
with edge
triggering

Repetitive | Q N RETRIG | <source> | level 0
counting COUNT
with

hardware
retriggering

Table 16 Rate Event Properties for 16-bit Event Counting

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 81

32-bit Am9513| Channel | Mode Clock Gate Pulses
Counting | Mode

Repetitive D,D N..N+1 COUNT32 | <source> | DISABLED |0
counting
with no
hardware
gating

Non- D, A N..N+1 COUNT32 | <source> | DISABLED |1
repetitive
counting
with no
hardware
gating

Repetitive | E, D N..N+1 COUNT32 | <source> | level 0
counting
with level
gating

Table 17 Rate Event Properties for 32-bit Event Counting

64-bit Am951 | Channel | Mode Clock Gate Pulses
Counting | 3 Mode

Repetitive | D, D, D, | N..N+3 COUNT64 | <source> | DISABLED |0
counting D
with no
hardware
gating

Table 18 Rate Event Properties for 64-bit Event Counting

KPCI-3140

In the following tables, the KPCI-3140 Maode column refers to the hardware mode
that DriverLINX uses to implement the counter function. See “KPCI-3140 Operating
Modes” on page 116 for information about hardware modes.

82 « Using Task-Oriented Functions DriverLINX Counter/Timer User’'s Guide

16-bit
Counting

KPCI-3140
Mode

Channel

Mode

Clock

Gate

Pulses

Repetitive
counting
with no
hardware
gating

2

COUNT

<source>

DISABLED

Non-
repetitive
counting
with no
hardware
gating

COUNT

<source>

DISABLED

Repetitive
counting
with level
gating

COUNT

<source>

level

Non-
repetitive
counting
with edge
triggering

COUNT

<source>

edge

Table 19 Rate Event Properties for 16-bit Event Counting

32-bit
Counting

KPCI-3140
Mode

Channel

Mode

Clock

Gate

Pulses

Repetitive
counting
with no
hardware
gating

2,2

N..N+1

COUNT32

<source>

DISABLED

Repetitive
counting
with level
gating

2,2

N..N+1

COUNT32

<source>

level

Table 20 Rate Event Properties for 32-bit Event Counting

64-bit
Counting

KPCI-3140
Mode

Channel

Mode

Clock

Gate

Pulses

Repetitive
counting
with no
hardware
gating

2,2,2,2

N..N+3

COUNT64

<source>

DISABLED

Repetitive
counting
with level
gating

2,2,2,2

N..N+3

COUNT64

<source>

level

Table 21 Rate Event Properties for 64-bit Event Counting

DriverLINX Counter/Timer User’s Guide

Using Task-Oriented Functions « 83

Hardware Setup for Event Counting

The Am9513 supports
counting any source or gate
input aswell as the previous
counter’s terminal count and

For event counting, the application specifies the Logical Channel, N, of the base
counter in the Service Request. The user attaches the count source to the terminal the
application specifies in the Service Request Clock property. Depending on the
counting Mode, the user optionally attaches a triggering or gating signal to the Gate

the internal frequency divider. input.
Channel Clock Gate Output
N count source seetables
N+m any

When using multiple counter/timer channels, the application’s Service Request
specifies the base counter/timer, and DriverLINX then automatically uses

consecutive counter/timer channels for the higher-order count.

Event Counting Using C/C++

//**************************************

/1 Use this procedure for event counting
//**************************************

U NT StartEvent Count (LPServiceRequest pSR, U NT Logi cal Devi ce,
U NT Logi cal Channel, CLOCKS source,

GATESTATUS gate, U NT cl kQut,

BOOLEAN cont i nuous)
/1 Set up Service Request to performtask

/1 First zero Service Request structure
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
/] Then initialize structure size

DL_Set Ser vi ceRequest Si ze(*pSR) ;

/1 Set up Request Group of Service Request
pSR- >hWwhd = Get Saf eHwnd() ;

pSR- >devi ce = Logi cal Devi ce;

pSR- >subsyst em = CT,;

pSR- >nbde = POLLED,

pSR- >oper ati on = START,;

/1 Set up Timng Event

pSR->ti m ng.typeEvent = RATEEVENT,;

pSR->ti m ng. u.rat eEvent. channel = Logi cal Channel ;
pSR->timng.u

pSR->ti m ng. u.rateEvent. cl ock = source,;

pSR->ti m ng. u.rateEvent.gate = gate;

pSR->ti m ng. u.rateEvent. period = 0;

pSR- >t i m ng. u.rat eEvent . onCount = O0;

pSR->ti m ng. u. rateEvent. pul ses = continuous ? O :
pSR->ti m ng. u. rat eEvent. pul ses | = cl kQut;

/1 Call DriverLINX to perform Service Request

return DriverLl NX(pSR);

.rateEvent.node = COUNT; // or COUNT32 or COUNT64

84 « Using Task-Oriented Functions

DriverLINX Counter/Timer User’s Guide

Event Counting Using Visual Basic

LR R R R R

Use this procedure for event counting

Tokkkhkkkkhhkhhhkhhkhhkhhhkhkhhkhhhkhkhkhhkhkhkk

Function StartEvent Count (dl As DriverLlINXSR ByVal Logical Device As
I nteger, ByVal Logical Channel As Integer, ByVal source As |nteger,
ByVal gate As Integer, ByVal clkQut As Integer, ByVal continuous As
I nteger) As Integer
" Set up Service Request to performtask
Wth dl
. Req_devi ce = Logi cal Devi ce
. Req_subsystem = DL_CT
. Req_node = DL_POLLED
. Req_op = DL_START
.Evt _Timtype = DL_RATEEVENT
. Evt _Ti m rateChannel = Logi cal Channel
.Evt _TimrateMbde = DL_COUNT ' or DL_COUNT32 or DL_COUNT64
.Evt _Timrated ock = source
.Evt_TimrateGate = gate
.Evt_TimratePeriod = 0
.Evt _TimrateOnCount = 0
I f continuous Then
.Evt _TimratePulses = 0
El se
.Evt_TimratePulses =1
End | f
.Evt _TimrateQutput = clkCQut
Gt her events, buffers, channels unneeded
.Evt_Str_type DL_NULLEVENT
.Evt_Stp_type DL_NULLEVENT
.Sel _buf_N=20
.Sel _chan_N =0
. Refresh
Start Event Count = . Res_result
End Wth
End Function

Frequency Measurement

DriverLINX can measure the time-averaged frequency of an unknown frequency
source connected to the Clock input. Frequency measurement requires two or more
counter/timers configured as gating and measurement counters.

JLLIL Clock

Internal
Clock Gate Counter

Gating

Output

User must add this jumper

LI L Clock
Unknown
Frequency Gate =

Measurement Output

Counter

Figure 3 Freguency Measurement

The measurement counter counts the unknown frequency at its Clock input for a
timeinterval defined by the gating counter. DriverLINX clocks the gating counter

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 85

from an internal crystal reference oscillator to produce a precise counting duration.
Applications can calculate the unknown input frequency as

measurementCount
gatingCount x clockPeriod

frequency =

where measurementCount is the counter value DriverLINX reads from the
measurement counter, gatingCount is the counter val ue the application specifies for

the measurement interval in the Service Request, and clockPeriod is the duration of

the reference oscillator’s period. See “Converting Between Counts and Time” on
page 58 for how to convert a count to seconds.

It is the application’s The accuracy of the measurement is a function of the unknown input frequency and
responsibility to select the the gating interval. Asthe input frequency decreases, the gating interval should
gating interval. increase to preserve accuracy. To measure a 0.1 Hz signal, the gating interval should

be approximately 3 minutes.
Usage Notes

Use of this function is highly dependent on hardware features. Some models cannot
stop nor latch counts in this mode so the results may be invalidated by counter
rollover. This means that, on such hardware, a STATUS operation is required to
sampl e the measurement counter after the first gate pul se but before the next.
Depending on the clock frequency and counter width, the valid sample window can
be very short.

Starting a Frequency Counter
To start a software-polled frequency counter, set up the Service Request Group as

follows:
Device Subsystem Mode Operation
<Logica Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop
Rate None or None or
Command Terminal Count

See “Specifying the Rate Event for Frequency Measurements” on page 87 for how to
assign the properties of a Rate Event. DriverLINX does not need Start or Stop events
for frequency measurements, but the application may optionally specify Command
and Terminal Count for Start and Stop events, respectively. For a Service Request
that does not specify buffers, None and Command are equivalent for a Start Event as
are None and Terminal Count for a Stop Event.

86 ¢ Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Each Am9513 chip hasfive
counter/timer channels. When
advancing to the next higher
channel, the hardware wraps
around fromthe last to first
channel.

The KPCI-3140 chip cannot
wrap around fromthe last to
first.

The user must install a

jumper to perform frequency
measurements. See

“Hardware Setup for
Frequency Measurement” on
page 89.

Specifying the Rate Event for Frequency
Measurements

DriverLINX supports 16- and 32-bit frequency measurements using multiple
counter/timer channels. DriverLINX uses one counter (on the Am9513) or two
counters (on the KPCI-3140) for the gating counter and one or two counters for the
measurement counter. When using multiple counter/timer channels, the application
specifiesthe Logical Channel of the first gating counter in the Service Request and
DriverLINX automatically uses consecutive counter/timer channels for the
measurement counter(s). The user may attach the unknown input source to any
Clock or Gate input that DriverLINX allows for the Clock property.

DriverLINX supports repetitive (Pulses property = 0) and non-repetitive (Pulses
property = 1) frequency measurement with several gating options as shown in the
following tables for 16- and 32-bit frequency measurement. Repetitive counters
continually repeat the frequency measurement. Non-repetitive counters measure one
input cycle and then stop measuring.

To set up afrequency measurement, select the type of measurement from the
following tables and program the Rate Generatopropertiesin a Service Request as
specified. The OnCountproperty specifies the gating interval while the Period
property should be zero. Other unused or unspecified properties should be set to
zero. Applications can set the Rate Generator’®utput property to any value. See
“Counter Output” on page 55.

Am9513

The Am9513 Mode column in the following tables refers to the Advanced Micro

Devices’ letter designation for the hardware modes that DriverLINX uses to

implement the counter function. See “Am9513 Operating Modes” on page 117 for

information about hardware modes.

16-bit Channel | Mode | Clock Gate Pulses

Frequency
Measurement

AM9513
Mode

Repetitive JQ N..N+1 DISABLED | 0
measurement
with no hardware

gating

FREQ | <source>

Non-repetitive N..N+1 <source> | DISABLED |1
measurement
with no hardware

gating

GQ FREQ

Repetitive N..N+1 <source> | EDGE 0
measurement
with edge

triggering

L,Q FREQ

Non-repetitive N..N+1 <source> | EDGE 1

measurement
with edge

0

FREQ

triggering

Table 22 Rate Event Properties for 16-bit Frequency Measurement

DriverLINX Counter/Timer User’s Guide

Using Task-Oriented Functions « 87

32-bit Am9513| Channel | Mode | Clock Gate Pulses
Frequency Mode

Measurement

Repetitive G,ED N..N+2 FREQ3 | <source> | DISABLE |0
measurement 2 D

with no hardware

gating

Non-repetitive G ED N..N+2 FREQ3 | <source> | DISABLE |1
measurement 2 D

with no hardware

gating

Repetitive I,E,D N..N+2 FREQ3 | <source> | EDGE 0
measurement 2

with edge

triggering

Non-repetitive I,E,D N..N+2 FREQ3 | <source> | EDGE 1
measurement 2

with edge

triggering

Table 23 Rate Event Properties for 32-bit Frequency Measurement

KPCI-3140

The KPCI-3140 Mode column refers to the hardware modes that DriverLINX uses to
implement the counter function. See “KPCI-3140 Operating Modes” on page 116 for
information about hardware modes.

16-bit KPCI-3140 Channel| Mode | Clock Gate Pulses
Frequency |Mode
Measurement

Non-repetitive 2,1 N..N+2 FREQ | <source> | DISABLED |1
measurement
with no hardware
gating

Non-repetitive 2,1 N..N+2 FREQ [<source> | leve 1
measurement
with level gating

Table 24 Rate Event Properties for 16-bit Frequency Measurement

32-bit KPCI-3140 Channel| Mode | Clock Gate Pulses
Frequency |Mode

Measurement

Non-repetitive | 2,1 N.N+3 | FREQ32| <source> | DISABLED |1
measurement 29

with no hardware |

gating

Non-repetitive 2,1 N..N+3 FREQ32 | <source> | level 1
measurement 29

with level gating |

88 ¢ Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Table 25 Rate Event Properties for 32-hit Frequency Measurement

Hardware Setup for Frequency Measurement

For frequency measurement, the application specifies the Logical Channel, N, of the
gating counter in the Service Request. The user attaches the unknown frequency
signal to the terminal the application specifiesin the Service Request Clock property.
Depending on the counting Mode, the user optionally attaches asignal to the Gate
input.

Before performing a frequency measurement, the user must physically attach a
connection between the Output terminal of the last gating counter, Logical Channel
N, and the Gate terminal of the first measurement counter, Logical Channel N+m.

Channel Clock Gate Output

N (first gating seetables
counter)

N+m (first unknown source
measurement
counter)

N+m+ n (last any
measurement
counter)

When using multiple counter/timer channels, the application’s Service Request
specifies the first gating counter/timer, and DriverLINX then automatically uses
consecutive counter/timer channels for next gating counter, if any, and the
measurement counter(s).

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 89

Frequency Measurement Using C/C++

//***

/1 Use this procedure for frequency neasurenent

[KRRk Kk ko ok ok ok ok kK ok ok ok ok kK ok ok Rk ko k kR ok kR Rk kR ok ok k k

U NT Start FrequencyMeasurenent (LPServiceRequest
U NT Logi cal Devi c
U NT Logi cal Chann
GATESTATUS gat e,
U NT cl kCut,

PSR,

e,

el , CLOCKS source,
ULONG neasur e,

BOOLEAN cont i nuous)

I/ Set up Service Request to performtask

/1 First zero Service Request structure
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
/1 Then initialize structure size

DL_Set Ser vi ceRequest Si ze(*pSR) ;

/1 Set up Request Goup of Service Request
pSR- >hWwhd = Get Saf eHwnd() ;

pSR- >devi ce Logi cal Devi ce;

pSR- >subsyst em = CT,;

pSR- >nbde POLLED,

pSR- >oper ati on START;

1

/1 Set up Timng Event

pSR->ti m ng.typeEvent = RATEEVENT,;

pSR->ti m ng. u.rat eEvent. channel = Logi cal Channel ;
pSR->ti m ng. u.rateEvent.node = FREQ // or FREQ@2
pSR->ti m ng. u.rateEvent. cl ock = source,;

pSR->ti m ng. u.rateEvent.gate = gate;

pSR->ti m ng. u.rateEvent. period = 0;

pSR->ti m ng. u. rat eEvent. onCount = neasure;

pSR->ti m ng. u.rateEvent. pul ses = continuous ? O :
pSR->ti m ng. u.rateEvent. pul ses | = cl kQut;

/1 Call DriverLINX to perform Service Request

return DriverLl NX(pSR);

90 « Using Task-Oriented Functions

DriverLINX Counter/Timer User’s Guide

Frequency Measurement Using Visual Basic

Thkkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhhkhhkk

' Use this procedure for frequency neasurenent

Thkkkkhhkhhkhhkhhhkhhkhhhkhkhhkhhhkhkhhhhhkhkhhkhhhhkhkkk

Function StartFrequencyMeasurenent (dl As DriverLl NXSR, ByVal
Logi cal Devi ce As Integer, ByVal Logical Channel As |Integer, ByVal source
As Integer, ByVal gate As Integer, ByVal neasure as Long, ByVal clkQut
As Integer, ByVal continuous As Integer) As I|nteger
’ Set up Service Request to performtask
Wth dl
. Req_devi ce = Logi cal Devi ce
. Req_subsystem = DL_CT
. Req_node = DL_POLLED
. Req_op = DL_START
.Evt _Timtype = DL_RATEEVENT
. Evt _Ti m rateChannel = Logi cal Channel
.Evt _TimrateMdde = DL_FREQ ' or DL_FRE@32
.Evt _Timrated ock = source
.Evt_TimrateGate = gate
.Evt_TimratePeriod = 0
. Evt _Ti mrateOnCount = neasure
I f continuous Then
.Evt _TimratePul ses = 0
El se
.Evt_TimratePulses =1
End | f
.Evt _TimrateQutput = clkCQut
* Other events, buffers, channels unneeded
.Evt_Str_type DL_NULLEVENT
.Evt _Stp_type DL_NULLEVENT
.Sel _buf_N=10
.Sel _chan_N =0
. Refresh
Start FrequencyMeasurenent = . Res_result
End Wth
End Function

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 91

Interval Measurement

DriverLINX can measure the time interval between two consecutive pulses using
two techniques. In one technique, DriverLINX measures the time delay between two
pulses connected to different counters. In the other technique, DriverLINX measures
the delay between two pulses attached to the input of one counter.

JLUL clock

Internal Interval Output
M Gate Counter
Pulse 1
e Clock . |
Internal nterva Output
M Gate Counter
Pulse 2
Figure 4 Interval Measurement on Two Channels
Clock Interval
Internal
Output
N I Iy Gate Counter P

Pulse 1 & 2

Figure5 Interval Measurement on One Channel

Usage Notes

Use of this function is highly dependent on hardware features. Some hardware
models support only single-input interval measurement, while other model support
only dual-input interval measurement.

Also, some models cannot stop nor latch counts in this mode so subsequent pul ses or
counter rollover may invalidate the results. This means that, on such hardware, a
STATUS operation is required to sample the counters after both pulses but before
counter rollover. Depending on the clock frequency and pulse timing, the valid
sample window can be very short.

Starting an Interval Counter

To start a software-polled interval counter, set up the Request Group as follows:;

Device Subsystem Mode Operation
<Logica Device> CT POLLED START

92 « Using Task-Oriented Functions DriverLINX Counter/Timer User’'s Guide

Set up the Events Group as follows:

Timing Start Stop
Rate None or None or
Command Termina Count

See “Specifying the Rate Event for Interval Measurements” on page 93 for how to
assign the properties of a Rate Event. DriverLINX does not need Start or Stop events
for interval measurements, but the application may optionally specify Command and
Terminal Count for Start and Stop events, respectively. For a Service Request that
does not specify buffers, None and Command are equivalent for a Start Event as are
None and Terminal Count for a Stop Event.

Specifying the Rate Event for Interval
Measurements

DriverLINX supports 16-bit interval measurements using 1 or 2 counter/timer
channels. When using a single input, DriverLINX measures the interval between two
consecutive pulse edges connected ta3éie input. When dual inputs for interval
measurements, DriverLINX measures the interval between pulse edges connected to
the Gate inputs of each counter.

« To specify dual input interval measurements, the application specifies
the first Logical Channel as the timing Logical Channel and specifies
the second Logical Channel in tReriod property of the Rate Event.

« To specify single input measurements, the application should set the
Period property to the same value as @l@annel property.

The Clock property must specify one of the internal clock sources. The internal clock
period times 65536 determines the longest interval between two pulses that the
hardware can measure.

Repetitive counters To set up an interval measurement, prograniRdte Generator properties in a
continually repeat the interval Service Request as specified in the following table. Unused or unspecified prc
measurement. Non-repetitive should be set to zero. Applications can set the Rate Genel@tpis property to
counters measure one input any value. See “Counter Output” on page 55.

pair and then stop counting.

Am9513

The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit Interval | AM9513 | Channel | Mode Clock | Period Pulses
Measurement | Mode

Repetitive (single | R N INTERVAL | <source> | N 0
input)

measurement

Table 26 Rate Event Properties for 16-bit Interval Measurements

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions ¢ 93

Hardware Setup for Interval Measurements

For interval measurements, the application specifies the Logical Channel(s) of the
input counter(s) in the Service Request. The user attaches the unknown pulse
signal(s) to the Gate inputs of the channel(s) the user specified. The application can
program the counter/timer to measure the delay between the rising or falling edges of
the pul ses.

Interval Measurement Using C/C++

[KRR Kk ko ok ok ok ok kK ok ok ok ok kK ok ok ok ok ko ok ok ko ko k kR ok kK k

/1 Use this procedure for interval measurenents
//***

U NT Startlnterval Measurenent (LPServiceRequest pSR
U NT Logi cal Devi ce,
U NT Logi cal Channel 1,
U NT Logi cal Channel 2, CLOCKS sour ce,
GATESTATUS gat e,
U NT cl kout)

/1 Set up Service Request to performtask

/1 First zero Service Request structure
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
/] Then initialize structure size

DL_Set Ser vi ceRequest Si ze(*pSR) ;

/1 Set up Request Group of Service Request
pSR- >hWwhd = Get Saf eHwnd() ;

pSR- >devi ce = Logi cal Devi ce;

pSR- >subsyst em = CT,;

pSR- >nbde = POLLED,

pSR- >oper ati on = START,

/1 Set up Timng Event

pSR->ti m ng.typeEvent = RATEEVENT,;

pSR->ti m ng. u.rat eEvent. channel = Logi cal Channel 1,
pSR->ti m ng. u.rat eEvent . node = | NTERVAL;

pSR->ti m ng. u.rateEvent. cl ock = source;

pSR->ti m ng. u.rateEvent.gate = gate;

pSR->ti m ng. u. rateEvent. period = Logi cal Channel 2;
pSR- >t i m ng. u.rat eEvent . onCount = O0;

pSR->ti m ng. u.rat eEvent. pul ses =

Logi cal Channel 1 == Logi cal Channel 2 ? 0 : 1,
pSR->ti m ng. u. rat eEvent. pul ses | = cl kQut;

/1 Call DriverLINX to perform Service Request
return DriverLl NX(pSR);

94 « Using Task-Oriented Functions

DriverLINX Counter/Timer User’s Guide

Interval Measurement Using Visual Basic

Thkkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhhkhhkk

' Use this procedure for interval neasurenents

Thkkkkhhkhhkhhkhhhkhhkhhhkhkhhkhhhkhkhhhhhkhkhhkhhhhkhkkk

Function Startlnterval Measurenent (dl As DriverLl NXSR, ByVal
Logi cal Device As Integer, ByVal Logical Channell As |nteger, ByVal
Logi cal Channel 2 As | nteger, ByVal source As |Integer, ByVal gate As
I nteger, ByVal clkQut As Integer) As Integer
’ Set up Service Request to performtask
Wth dl
. Req_devi ce = Logi cal Devi ce
. Req_subsystem = DL_CT
. Req_node = DL_POLLED
. Req_op = DL_START
.Evt _Timtype = DL_RATEEVENT
. Evt _Ti mrateChannel = Logi cal Channel 1
. Evt _Ti mrateMde = DL_| NTERVAL
.Evt _Timrated ock = source
.Evt_TimrateGate = gate
.Evt _TimratePeriod = Logi cal Channel 2
.Evt _TimrateOnCount = 0
I f Logi cal Channel 1 = Logi cal Channel 2 Then
.Evt _TimratePul ses = 0
El se
.Evt_TimratePulses =1
End | f
.Evt _TimrateQutput = clkCQut
* Other events, buffers, channels unneeded
.Evt_Str_type DL_NULLEVENT
.Evt _Stp_type DL_NULLEVENT
.Sel _buf_N=10
.Sel _chan_N =0
. Refresh
Startlnterval Measurenment = . Res_result
End Wth
End Function

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions ¢ 95

Period and Pulse Width Measurement

DriverLINX can measure the period, or duration, of a single cycle of an unknown
input.

Internal
Frequency
I Clock

Period

c Output
T Gate ounter

—

period
Unknown
Frequency

Figure 6 Period Measurement

DriverLINX can measure the duration of the positive or negative half-cycle of an
input.

Internal
Frequency

Pulse Width

Count Output
I L Gate ounter

+width
Unknown
Frequency

Figure 7 Pulse Width Measurement

Starting an Period or Pulse Width Measurement

To start a software-polled period or pulse width measurement, set up the Service
Request Group as follows:

Device Subsystem Mode Operation

<Logica Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop
Rate None or None or
Command Terminal Count

96 ¢ Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Repetitive counters
continually repeat the interval

measurement.

See “Specifying the Rate Event for Period and Pulse Width Measurements” on page
97 for how to assign the properties of a Rate Event. DriverLINX does not need Start
or Stop events for period and pulse width measurements, but the application may
optionally specify Command and Terminal Count for Start and Stop events,
respectively. For a Start Event, None and Command are equivalent for a Start Event
as are None and Terminal Count for a Stop Event.

Specifying the Rate Event for Period and Pulse
Width Measurements

DriverLINX supports period and pulse width measurements using one counter/timer
channel.

« To measure a period, DriverLINX times the interval between two rising
or falling edges at th&ate input. To specify a period measurement, set
the Gate property of the Rate Event to one of the edge trigger values.

e To measure a pulse width, DriverLINX times the duration of the
positive or negative half-cycle of the signal at Gete input. To
specify a pulse width measurement, setGag= property of the Rate
Event to one of the level gating values.

The Clock property must specify one of the internal clock sources. The internal clock
period times maximum counter value determines the longest period or pulse width
that the hardware can measure.

To set up a period or pulse width measurement, prograRetkdésenerator
properties in a Service Request as specified in the following table. Unused or
unspecified properties should be set to zero. Applications can set the Rate
Generator'Qutput property to any value. See “Counter Output” on page 55.

Am9513

The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit Period AM9513 | Channel | Mode Clock Gate Pulses
Measurement | Mode

Repetitive R N PULSEWD | INTERNAL | EDGE 0
measurement with

edge triggering

Table 27 Rate Event Properties for 16-bit Period Measurements

16-bit Pulse AM9513 | Channel | Mode Clock Gate Pulses
Width Mode

Measurement

Repetitive Q N PULSEWD | INTERNAL | LEVEL 0
measurement with

level gating

Table 28 Rate Event Properties for 16-bit Pulse Width Measurements

DriverLINX Counter/Timer User’s Guide

Using Task-Oriented Functions « 97

KPCI-3140

The KPCI-3140 Mode column refers to the hardware mode that DriverLINX uses to
implement the counter function. See “KPCI-3140 Operating Modes” on page 116 for
information about hardware modes.

16-bit Pulse KPCI-3140 Channel| Mode Clock Gate Pulses
Width Mode

Measurement

Repetitive 2 N PULSEWD | INTERNAL | LEVEL 0
measurement with

level gating

Table 29 Rate Event Properties for 16-bit Pulse Width Measurement

Hardware Setup for Period and Pulse Width
Measurements

For period and pulse width measurements, the application specifies the Logical
Channel of the measurement counter in the Service Request. The user should attach
the unknown signal to th@ate input of the channel specified in the Service Request.
The application can program the counter/timer to measure the delay between the
rising or falling edges of the signal or to measure the duration of the positive or
negative half cycle.

98 ¢ Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Period or Pulse Width Measurements Using C/C++

//***

/1 Use this procedure for period and pul se wi dth neasurenents

] KRR Kk ko ok ok ok ok kK ok ok ok kK ok ok ok ok kK ok ok ko k kR ok ko kR ok kR Rk ok ok ko k

U NT Start Peri odPul seW dt hMeasur enent (LPServi ceRequest pSR
U NT Logi cal Devi ce,
U NT Logi cal Channel ,
CLOCKS source,
GATESTATUS gat e,
U NT cl kQut)

/'l Set up Service Request to performtask

/1 First zero Service Request structure
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
/1 Then initialize structure size

DL_Set Ser vi ceRequest Si ze(*pSR) ;

/1 Set up Request Goup of Service Request
pSR- >hWwhd = Get Saf eHwnd() ;

pSR- >devi ce = Logi cal Devi ce;

pSR- >subsyst em = CT,;

pSR- >nbde = POLLED,

pSR- >oper ati on = START,;

/1 Set up Timng Event

pSR->ti m ng.typeEvent = RATEEVENT,;

pSR->ti m ng. u.rat eEvent. channel = Logi cal Channel ;
pSR->ti m ng. u.rat eEvent . node = PULSEWD,

pSR->ti m ng. u.rateEvent. cl ock = source,;

pSR->ti m ng. u.rateEvent.gate = gate;

pSR->ti m ng. u.rateEvent. period = 0;

pSR->ti m ng. u. rat eEvent. onCount = O;

pSR->ti m ng. u.rateEvent. pul ses = 0;

pSR->ti m ng. u.rateEvent. pul ses | = cl kQut;

/1 Call DriverLINX to perform Service Request
return DriverLlI NX(pSR);

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 99

Period or Pulse Width Measurement Using Visual
Basic

LR R R kS R S R R S R R R

' Use this procedure for period or pulse wi dth neasurenents
L S
Function Start PeriodPul seW dt hMeasurenent (dl As DriverLl NXSR, ByVal
Logi cal Device As Integer, ByVal Logical Channel As |Integer, ByVal source
As Integer, ByVal gate As Integer, ByVal clkQut As Integer)As I|nteger
' Set up Service Request to performtask
Wth dl
. Req_devi ce = Logi cal Devi ce
. Req_subsystem = DL_CT
. Req_npde = DL_POLLED
. Req_op = DL_START
.Evt _Ti mtype = DL_RATEEVENT
. Evt _Ti m rateChannel = Logi cal Channel
.Evt _TimrateMdde = DL_PULSEWD
.Evt_Timrated ock = source
.Evt _TimrateGate = gate
.Evt _TimratePeriod = 0
.Evt_TimrateOnCount = 0
.Evt_TimratePulses = 0
.Evt _TimrateQutput = clkCQut
’ Other events, buffers, channels unneeded
.Evt_Str_type DL_NULLEVENT
. Evt _Stp_type DL_NULLEVENT
.Sel _buf_N=10
.Sel _chan_N = 0
. Refresh
St art Peri odPul seW dt hMeasurenent = . Res_result
End Wth
End Function

100 ¢ Using Task-Oriented Functions DriverLINX Counter/Timer User’'s Guide

Pulse and Strobe Generation

DriverLINX can generate a variety of single pulses, delayed pulses, and strobes or
one-shots. DriverLINX uses two parameters to characterize delayed pulses—delay
time and pulse duration. DriverLINX uses just one parameter, delay time, to
characterize strobes or one-shots.

Internal
Frequency

Strobe Output G

del
I L Gate Generator elay

Optional edge
or level gate

Figure 8 Srobe or One-shot Generation

Internal
Frequency

duration

Pulse Output L

I L Gate Generator

Optional edge
or level gate

Figure 9 Pulse Generation

Starting Pulse and Strobe Generation

To start a software-polled pulse or strobe output, set up the Request Group as

follows:
Device Subsystem Mode Operation
<Logica Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop
Rate None or None or
Command Termina Count

See “Specifying the Rate Event for Pulses and Strobes” on page 102 for how to
assign the properties of a Rate Event. DriverLINX does not need Start or Stop events
for pulses and strobes, but the application may optionally specify Command and
Terminal Count for Start and Stop events, respectively. For a Start Event, None and

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 101

Command are equivalent for a Start Event as are None and Terminal Count for a
Stop Event.

Specifying the Rate Event for Pulses and Strobes

DriverLINX supports 16-bit pulse and strobe generation using one counter/timer
channel. For strobe or one-shot outputs, the application specifies the delay preceding
the strobe pulse using the Period property of the Rate Event. For delayed pulses, the
application specifies the delay preceding the pulse using the Period property and the
duration of the pulse using the OnCount property of the Rate Event.

Generally, the Clock property should specify one of the internal clock sources, but
you may use any allowed source for the Clock input. The clock period times 65536
determines the longest delay and pul se width that the hardware can generate.

Repetitive counters support To set up strobes and pulses, program the Rate Generator propertiesin a Service

hardware retriggering. Non- Request as specified in the following table. Unused or unspecified properties should

repetitive generate a single be set to zero. Applications can set the Rate Gener&lotpsit property to any

pulse and stop. value. See “Counter Output” on page 55. By default, strobes generate an active high
pulse for 1 clock period after the delay while pulses toggle from low to high after the
delay.
AM9513

The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit AM9513 | Mode Period | OnCount | Gate Pulses
Strobes Mode

Software- A ONESHOT | delay 0 DISABLED | 1
triggered
strobe with no
hardware
gating

Software- B ONESHOT | delay 0 LEVEL 1
triggered

strobe with
level gating

Hardware- C ONESHOT | delay 0 EDGE 1
triggered
Strobe

Non- F ONESHOT | delay 0 EDGE 0
retriggerable
one-shot

Software- N RETRIG delay 0 LEVEL 1
triggered ONESHOT
strobe with
level gating
and hardware
retriggering

Software- O RETRIG delay 0 EDGE 1
triggered ONESHOT
strobe with
edge gating

102 « Using Task-Oriented Functions DriverLINX Counter/Timer User’'s Guide

16-bit
Strobes

AM9513
Mode

Mode

Period

OnCount

Gate

Pulses

and hardware
retriggering

Retriggerable
one-shot

RETRIG
ONESHOT

delay

EDGE

Table 30 Rate Event Properties for Strobes

16-bit
Pulses

AM9513
Mode

Mode

Period

OnCount

Gate

Pulses

Software-
triggered
delayed pulse
one-shot

G

PULSEGEN

delay

duration

DISABLED

Software-
triggered
delayed pulse
one-shot with
hardware
gating

PULSEGEN

delay

duration

LEVEL

Hardware-
triggered
delayed pulse
strobe

PULSEGEN

delay

duration

EDGE

Hardware-
triggered
delayed pulse
one-shot

PULSEGEN

delay

duration

EDGE

Delayed pulse
one-shot with
level-selected
reloading

FSKGEN

high
delay

low delay

DISABLED

Table 31 Rate Event Properties for Pulses

DriverLINX Counter/Timer User’s Guide

Using Task-Oriented Functions « 103

KPCI-3140

The KPCI-3140 Mode column refers to the hardware mode that DriverLINX uses to
implement the counter function. See “KPCI-3140 Operating Modes” on page 116 for
information about hardware modes.

16-bit KPCI-3140 Mode Period | OnCount | Gate Pulses
Strobes Mode

Software- 0 ONESHOT | delay 0 DISABLED | 1
triggered
strobe with no
hardware
gating

Hardware- 0 ONESHOT | delay 0 EDGE 1
triggered
Strobe

Non- 1 ONESHOT | delay 0 EDGE 0
retriggerable
one-shot

Table 32 Rate Event Properties for Strobes

16-bit KPCI-3140 Mode Period | OnCount | Gate Pulses
Pulses Mode

Software- 0 PULSEGEN| delay duration DISABLED |1
triggered
delayed pulse
one-shot

Hardware- 0 PULSEGEN| delay duration EDGE 1
triggered
delayed pulse
strobe

Hardware- 1 PULSEGEN]| delay duration EDGE 0
triggered
delayed pulse
one-shot

Table 33 Rate Event Properties for Pulses

Hardware Setup for Pulses and Strobes

For pulse and strobe generation, the application specifies the Logical Channel of the
pulse counter in the Service Request. The user should attach any gating or triggering
signals to th&ate input of the channel specified in the Service Request. The strobe
or pulse output appears at Beatput terminal of counter/timer.

104 « Using Task-Oriented Functions DriverLINX Counter/Timer User’'s Guide

Pulse and Strobe Generation Using C/C++

//**

/1 Use this procedure to generate pul ses and strobes

[F R K Kk ko ok ok ok ok ok ok ok ok ok ok ok kK ok ok ok sk ok ok ok ok kK ok ok ok ok kK ok ok ok kK

U NT StartPul seStrobe (LPServi ceRequest pSR
U NT Logi cal Devi ce,
U NT Logi cal Channel ,
U NT del ay,
U NT durati on,
BOOLEAN retri g,
U NT pul ses,
CLOCKS source,
GATESTATUS gat e,
U NT cl kQut)

I/ Set up Service Request to performtask

/1 First zero Service Request structure
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
/] Then initialize structure size

DL_Set Ser vi ceRequest Si ze(*pSR) ;

/1 Set up Request Goup of Service Request
pSR- >hWwhd = Get Saf eHwnd() ;

pSR- >devi ce = Logi cal Devi ce;

pSR- >subsyst em = CT,;

pSR- >nbde = POLLED,

pSR- >oper ati on = START,;

/1 Set up Timng Event
pSR->ti m ng.typeEvent = RATEEVENT,;
pSR->ti m ng. u.rat eEvent. channel = Logi cal Channel ;
if (duration != 0)
pSR->ti m ng. u.rat eEvent . node = PULSEGEN,
el se
pSR->tim ng. u.rateEvent.nbde = retrig ? RETRI GONESHOT : ONESHOT;

pSR->ti m ng. u.rateEvent. cl ock = source,;
pSR->ti m ng. u.rateEvent.gate = gate,;

pSR->ti m ng. u.rateEvent. period = del ay;
pSR->ti m ng. u.rat eEvent. onCount = durati on;
pSR->ti m ng. u.rat eEvent. pul ses = pul ses;
pSR->ti m ng. u.rateEvent. pul ses | = cl kQut;

/1 Call DriverLINX to perform Service Request
return DriverLl NX(pSR);

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 105

Pulse and Strobe Generation Using Visual Basic

Thkhkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhhkhhhkk

Use this procedure to generate pul ses and strobes

Thkkkkhhkhhkhhkhhhkhhkhhhkhhkhhkhhhhhkhkhhhhhkhkhhkhhhkhkhkkhkkk

1

Function StartPul seStrobe (dl As DriverLlI NXSR, ByVal Logical Device As
I nteger, ByVal Logical Channel As Integer, ByVal delay As |Integer, ByVal
duration As Integer, ByVal retrig As Integer, ByVal pul ses As Integer,
ByVal source As Integer, ByVal gate As Integer, ByVal clkQut As
I nteger)As |nteger
’ Set up Service Request to performtask
Wth dl
. Req_devi ce = Logi cal Devi ce
. Req_subsystem = DL_CT
. Req_node = DL_POLLED
. Req_op = DL_START
.Evt _Timtype = DL_RATEEVENT
. Evt _Ti m rateChannel = Logi cal Channel
If duration <> 0 Then
.Evt _TimrateMdde = DL_PULSEGEN
El se
If retrig <> 0 Then
. Evt _Ti m r at eMbde
El se
. Evt _Ti mrateMde
End | f
End | f
.Evt _Timrated ock = source
.Evt_TimrateGate = gate
.Evt_TimratePeriod = del ay
. Evt _TimrateOnCount = duration
. Evt _Ti mratePul ses = pul ses
Evt _Ti mrateCQutput = cl kQut
Ot her events, buffers, channels unneeded
.Evt _Str_type = DL_NULLEVENT
.Evt _Stp_type = DL_NULLEVENT
.Sel _buf_N=10
.Sel _chan_N =0
. Refresh
StartPul seStrobe = . Res_result
End Wth
End Function

DL_RETRI GONESHOT

DL_ONESHOT

106 < Using Task-Oriented Functions DriverLINX Counter/Timer User’'s Guide

Frequency Generation

DriverLINX can generate a variety of pulsetrains, variable duty cycle waveforms,
sguare waves, and frequency-shift keyed waveforms.

Internal
Frequency

Frequency

I L Gate Generator

Optional edge
or level gate

Figure 10 Freguency Generation

Starting Frequency Generation
To start frequency output, set up the Request Group as follows:

Device Subsystem Mode Operation
<Logica Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop
Rate None or None or
Command Terminal Count

See “Specifying the Rate Event for Frequency Generation” on page 107 for how to
assign the properties of a Rate Event. DriverLINX does not need Start or Stop events
for frequency generation, but the application may optionally specify Command and
Terminal Count for Start and Stop events, respectively. For a Start Event, None or
Command are equivalent, as are None or Terminal Count for a Stop Event.

Specifying the Rate Event for Frequency
Generation
DriverLINX supports 16-bit frequency generation using one counter/timer channel.

The Clock property must specify one of the internal clock sources. The internal clock
period times 65536 determines the longest period that the hardware can generate.

To set up a frequency generation, progranmRdte Generator properties in a

Service Request as specified in the following table. Unused or unspecified properties
should be set to zero. Applications can set the Rate Geneftmpist property to

any value. See “Counter Output” on page 55.

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 107

Am9513

The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit AM9513 | Mode Period | OnCount | Gate Pulses
Frequency | Mode

Rate D RATEGEN | period 0 DISABLED | 0
generator
with no
hardware
gating

Rate E RATEGEN | period 0 LEVEL 0
generator
with level
gating

Rate X RATEGEN | period |0 EDGE 0
generator
with edge
gating

Rate Q RETRIG period 0 LEVEL 0
generator RATEGEN
with
synchronizati
on

Squarewave | D SQWAVE |period |0 DISABLED |0
generator
with no
hardware
gating

Squarewave | E SQWAVE | period |O LEVEL 0
generator
with level
gating

Squarewave | X SQWAVE |period |O EDGE 0
generator
with edge
gating

Squarewave | Q RETRIG period |0 LEVEL 0
generator SQWAVE
with
synchronizati
on

Frequency D DIVIDER |divisor |O DISABLED | 0
divider with
no hardware
gating

Frequency E DIVIDER | divisor |0 LEVEL 0
divider with
level gating
Frequency X DIVIDER |divisor |O EDGE 0
divider with
edge gating

108 ¢ Using Task-Oriented Functions DriverLINX Counter/Timer User’'s Guide

16-bit AM9513 | Mode Period | OnCount | Gate Pulses
Frequency | Mode

Variableduty | J VDCGEN period | activehigh | DISABLED | 0
cyclerate duration
generator
with no
hardware
gating

Variableduty | K VDCGEN delay duration LEVEL 0
cyclerate
generator
with level
gating

Frequency- |V FSKGEN delay duration DISABLED | 0
shift keying

Table 34 Rate Event Properties for Frequency Generation

KPCI-3140

The KPCI-3140 Mode column refers to the hardware mode that DriverLINX usesto
implement the counter function. See “KPCI-3140 Operating Modes” on page 116 for
information about hardware modes.

16-bit KPCI-3140 Mode Period | OnCount | Gate Pulses
Frequency Mode

Rate 2 RATEGEN | period |0 DISABLED | 0
generator
with no
hardware
gating
Rate 2 RATEGEN | period |0 LEVEL 0
generator
with level
gating
Square wave | 2 SQWAVE | period |0 DISABLED |0
generator
with no
hardware
gating
Square wave | 2 SQWAVE | period |0 LEVEL 0
generator
with level
gating
Freguency 2 DIVIDER | divisor |0 DISABLED | 0
divider with
no hardware
gating
Frequency 2 DIVIDER |divisor |0 LEVEL 0
divider with
level gating

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 109

16-bit
Frequency

KPCI-3140
Mode

Mode

Period

OnCount

Gate

Pulses

Variable duty
cyclerate
generator
with no
hardware
gating

2

VDCGEN

period

active high
duration

DISABLED

Variable duty
cyclerate
generator
with level
gating

VDCGEN

delay

duration

LEVEL

Table 35 Rate Event Properties for Frequency Generation

Hardware Setup for Frequency Generation

For freguency generation, the application specifies the Logical Channel of the
frequency counter in the Service Request. The user should attach any gating or
triggering signals to the Gate input of the channel specified in the Service Request.
The frequency output appears at the Output terminal of counter/timer.

110 < Using Task-Oriented Functions

DriverLINX Counter/Timer User’s Guide

Frequency Generation Using C/C++

//**

/1 Use this procedure for frequency generation

[F R Kk Kk ko ok ok ok kK K ok ok ok kK Kk ok ok kR ok kR ok kR Rk ok ok ok Rk ok

U NT StartFrequency (LPServiceRequest pSR,
U NT Logi cal Devi ce,
U NT Logi cal Channel ,
GENERATORS node,
U NT peri od,
U NT onCount,
CLOCKS sour ce,
GATESTATUS gat e,
U NT cl kQut)

/1 Set up Service Request to performtask

/1 First zero Service Request structure
nenset (pSR, 0, sizeof (DL_SERVI CEREQUEST));
/] Then initialize structure size

DL_Set Ser vi ceRequest Si ze(*pSR) ;

/1 Set up Request Group of Service Request
pSR- >hWwhd = Get Saf eHwnd() ;

pSR- >devi ce = Logi cal Devi ce;

pSR- >subsystem = CT,;

pSR- >nbde = POLLED,

pSR- >oper ati on = START,;

/1 Set up Timng Event

pSR->ti m ng.typeEvent = RATEEVENT,

pSR->ti m ng. u.rat eEvent. channel = Logi cal Channel ;
pSR- >t i m ng. u.rat eEvent . node = node;

pSR->ti m ng. u.rateEvent. cl ock = source,;

pSR->ti m ng. u.rateEvent.gate = gate,;

pSR->ti m ng. u.rat eEvent. period = peri od,;

pSR- >t i m ng. u.rat eEvent . onCount = onCount;

pSR->ti m ng. u.rateEvent. pul ses = 0;

pSR->ti m ng. u.rateEvent. pul ses | = cl kQut;

/1 Call DriverLINX to perform Service Request
return DriverLlI NX(pSR);

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions « 111

Frequency Generation Using Visual Basic

Thkhkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhk kA Ak hkhkhkkkk

' Use this procedure frequency generation
Thkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk bk dk kA hkhkhkhkhkhkhkhkhkhkhkhkk ok ok
Function StartFrequency (dl As DriverLI NXSR, ByVal Logical Device As
I nteger, ByVal Logical Channel As Integer, ByVal npde As |nteger, ByVal
period As |nteger, ByVal onCount As |nteger, ByVal source As I|nteger,
ByVal gate As Integer, ByVal clkQut As Integer)As |nteger
’ Set up Service Request to performtask
Wth dl
. Req_devi ce = Logi cal Devi ce
. Req_subsystem = DL_CT
. Req_node = DL_POLLED
. Req_op = DL_START
.Evt _Timtype = DL_RATEEVENT
. Evt _Ti m rateChannel = Logi cal Channel
. Evt _Ti mrateMde = node
.Evt _Timrated ock = source
.Evt _TimrateGate = gate
.Evt _TimratePeriod = period
. Evt _Ti mrateOnCount = onCount
.Evt _TimratePul ses = 0
Evt _Ti mrateQutput = clkQut
Gt her events, buffers, channels unneeded
.Evt _Str_type = DL_NULLEVENT
.Evt _Stp_type = DL_NULLEVENT
.Sel _buf_N=10
.Sel _chan_N =0
. Refresh
Start Frequency = . Res_result
End Wth
End Function

112 « Using Task-Oriented Functions

DriverLINX Counter/Timer User’s Guide

Hardware Reference

8254 Operating Modes

This section describes the operating modes of the Intel 8254 Programmable Interval
Timer and how to set up a DriverLINX Service Request to implement each of the
8254’s modes. This information will help you to understand the 8254’s hardware
capabilities and to adopt legacy applications that use the 8254 to DriverLINX.

The 8254 is a simple chip. Each chip has three independently counter/timers that
operate in one of six basic operating modes. Each counter/timer has only one single-
polarity clock source, a single output mode (depending on the operating mode), and a
single gate input mode (also, depending on the operating mode). Data-acquisition
boards that use 8254 chips may expand the capabilities of the counter/timer with
features such as off-chip clock source selection and gate modes, or reduce its
capabilities by eliminating some external connections.

The following table shows how the 8254’s hardware features and terminology map
onto DriverLINX’s counter/timer model.

Intel 8254 DriverLINX

Operating modes (0..5) Mode, Gate, Pulses fields

Gating control Gate field

Count source selection (off-chip) Clock field

Count register Period or (Period - onCount) value
Count once/repetitively Pulses field

Binary/BCD counting binary counting only

Intel and other 8254 manufacturers generally designate the 8254's six basic
operating modes by the numbers 0 through 5. DriverLINX supports all these modes
using combinations of thdode, Gate, andPulses fields. The following sections
describe the 8254's basic modes using DriverLINX terminology.

DriverLINX Counter/Timer User’s Guide Hardware Reference « 113

Operating Mode Descriptions

Mode O: Interrupt on Terminal Count

Mode O provides a software-triggered strobe with level gating. The application must
issue a START (arm) command to the counter before it can begin counting. Once
armed, the counter counts all Clock edges that occur while the Gate is high and
disregards Clock edges that occur while the Gate islow. Thisfeature permits the
Gate to turn the count process on and off.

After receiving a START command, the counter setsits output low and counts to
TC. Upon reaching TC, the counter setsits output high and automatically disarms
itself inhibiting further counting. Counting resumes upon receipt of a STOP followed
by anew START command.

Mode Period onCount Pulses Gate

ONESHOT value 0 1 HiLevel

Mode 1:Hardware-retriggerable One-Shot

Mode 1 issimilar to Mode 0 except that an armed counter does not begin counting
until it detects arising gate edge. The gate level does not modulate counting.

The application must START (arm) the counter before application of the triggering
gate edge. A disarmed counter ignores gate edges. After receiving a START
command, the counter setsits output high until the first rising gate edge. It then set
its output low and counts to TC. Upon reaching TC, the counter setsits output high,
reloads the Period value and disarms until the next rising gate edge.

All rising gate edges, including the first gate edge used to start the counter, retrigger
the count process. On the first Clock edge after the retriggering gate edge, the
counter loads the Period value. Counting resumes on the second Clock edge after a
retrigger. Irrespective of the gate level, the counter counts al Clock edges after
receiving the triggering gate edge until TC.

To initiate a new counting cycle, apply a STOP command followed by a new
START command and a new gate edge.

Mode Period onCount Pulses Gate

RETRIGONESHOT | value 0 1 HiEdge

Mode 2: Rate Generator

Mode 2 produces a periodic output pulse with level gating. The application must
issue a START (arm) command to the counter before it can begin counting. Once
armed, the counter counts all Clock edges that occur while the Gate is high and
disregards Clock edges that occur while the Gate islow. When the Gate rises, the
counter resets the count and resumes counting. This feature permits the Gate to turn
the count process on and off, and to synchronize the count with an external signal.

After receiving a START command, the counter setsits output high and counts to
TC. Upon reaching TC, the counter sets its output low for one clock pulse and the

114 « Hardware Reference

DriverLINX Counter/Timer User’s Guide

reloads the counter. Counting continues until the application sends a STOP
command.

Mode Period onCount Pulses Gate
RATEGEN vaue 0 0 HiLevel

Mode 3: Square Wave

Mode 3isidentical to Mode 2 except that the duty cycle of the output is 50% for
even Periods and about 50% for odd Periods. Theinitia output level is high. The
counter toggles the output at TC/ 2 and again at TC. Counting continues until the
application sends a STOP command.

Mode Period onCount Pulses Gate
SQWAVE value 0 0 HiLevel

Mode 4: Software-triggered Strobe

Mode 4 is similar to Mode 0 except that the duty cycle and phase of the output. The
output isinitially high and goeslow for one clock cycleat TC.

The application must issue a START (arm) command to the counter before it can
begin counting. Once armed, the counter counts all Clock edges that occur while the
Gate is high and disregards Clock edges that occur while the Gate islow. This
feature permits the Gate to turn the count process on and off.

After receiving a START command, the counter setsits output high and counts to
TC. Upon reaching TC, the counter setsits output low for one clock pulse. It then
automatically disarmsitself inhibiting further counting. Counting resumes upon
receipt of a STOP followed by anew START command.

Mode Period onCount Pulses Gate
RETRIGONESHOT | value 0 1 HiLevel

Mode 5: Hardware-triggered Strobe

Mode 5 isidentical to Mode 4 except that the Gate input triggers counting instead of
modulating counting.

The application must arm the counter with a START command before the
application of arising gate edge; the counter ignores gate edgesin the disarmed state.
The counter starts counting on the first Clock edge after the rising gate edge and
continues until TC. At TC, the counter reloads the Period value and automatically
rearmsitself. Counting resumes at the next rising gate edge.

Mode Period onCount Pulses Gate
ONESHOT value 0 1 HiEdge

DriverLINX Counter/Timer User’s Guide Hardware Reference « 115

KPCI-3140 Operating Modes

This section describes the operating modes of the Keithley KPCI-3140 proprietary
counter/timer chip and how to set up a DriverLINX Service Request to implement
each of the KPCI-3140's modes. This information will help you to understand the
KPCI-3140's hardware capabilities.

The KPCI-3140 counter/timer chip is a simple chip. Each chip has four 16-bit
counter/timers available for user functions. It also has two 24-bit counter/timers but
they can only be used for pacing. The user counter/timers can operate in one of three
basic operating modes. The mode determines whether the gate is edge or level
sensitive.

The following table shows how the KPCI-3140’s hardware features and terminology
map onto DriverLINX's counter/timer model.

KPCI-3140 CT Chip DriverLINX

Operating modes (0..2) Mode, Pulses fields
Gating control Gate field

Count source selection Clock field

Load register Period field

Pulse register Period - onCount field
Count once/repetitively Pulses field

DriverLINX supports the chip’s there operating modes using combinations of the
Mode, Gate, andPulses fields. The following sections describe the basic modes
using DriverLINX terminology.

Operating Mode Descriptions

Mode 0: Non-retriggerable One-shot

In non-retriggerable one-shot mode, DriverLINX arms the counter at the start of the
task. If a gate edge is specified, the counter waits for a rising or falling edge trigger

on the external gate input, otherwise DriverLINX triggers the counter via software.
When the trigger occurs, the counter begins incrementing. When the counter reaches
the value specified by Period - onCount, it activates its output for at least one count.
The output stays active until the counter reaches the terminal count specified in the
Period field. The counter then deactivates its output and stops.

Mode 0 is identical to mode 1 except that mode 0 ignores all triggers after the first
trigger.

Mode Period onCount Pulses Gate
PULSEGEN delay duration 1 edge
PULSEGEN delay duration 1 DISABLED
ONESHOT period 0 1 edge
ONESHOT period 0 1 DISABLED

116 « Hardware Reference

DriverLINX Counter/Timer User’s Guide

Mode 1: Retriggerable One-shot

In retriggerable one-shot mode, DriverLINX arms the counter at the start of the task.
If agate edge is specified, the counter waits for arising or falling edge trigger on the
external gate input, otherwise DriverLINX triggers the counter via software. When
the trigger occurs, the counter begins incrementing. When the counter reaches the
value specified by Period - onCount, it activates its output for at least one count. The
output stays active until the counter reaches the terminal count specified in the
Period field. The counter then deactivates its output and stops. A trigger while the
counter is stopped restarts the cycle.

Mode O isidentical to mode 1 except that mode O ignores al triggers after the first

trigger.
Mode Period onCount Pulses Gate
PULSEGEN delay duration 0 edge
PULSEGEN delay duration 0 DISABLED
ONESHOT value 0 0 edge
ONESHOT value 0 0 DISABLED

Mode 2: Continuous Increment

In continuous increment mode, DriverLINX arms and starts the counter. When the
counter reaches the value specified by Period - onCount, it activatesits output for at
least one count. The output stays active until the counter reaches to the terminal
count. The output stays active until the counter reaches the terminal count specified
in the Period field. The counter then deactivatesits output, reloads and continues
counting. The counter pauses during counting when an enabled gate signal is not at

the specified level.

Mode Period onCount Pulses Gate
VDCGEN period on count 0 level
RATEGEN period 0 0 level
SQWAVE period 0 0 level
DIVIDER divisor 0 0 level
VDCGEN period on count 0 DISABLED
RATEGEN period 0 0 DISABLED
SQWAVE period 0 0 DISABLED
DIVIDER divisor 0 0 DISABLED

Am9513 Operating Modes

This section describes the operating modes of the Am9513 System Timing

Controller and how to set up aDriverLINX Service Request to implement each of

the Am9513’s modes. This information will help you to understand the Am9513’s
hardware capabilities and to adopt legacy applications that use the Am9513 to
DriverLINX.

DriverLINX Counter/Timer User’s Guide Hardware Reference « 117

The Am9513 is a complex chip. Each Am9513 counter/timer supports about 12,160
parameter combinations. Users can select from 19 basic operating modes, 16 clock
(source) inputs, 2 clock polarities, 2 counting types, 2 counting directions, and 5
output options. If you interconnect counter/timers, the number of possible
combinations soars to about 2x10%. Clearly some organization is needed.

The following table shows how the Am9513’s hardware features and terminology
map onto DriverLINX's counter/timer model.

Am9513 DriverLINX

Operating modes (A..X) Mode, Gate, Pulses fields
Gating control Gate field

Source edge polarity of Clock field

Count source selection Clock field

Output control Output bits of Pulses field

Load register Period or (Period - onCount) value
Hold register onCount value or STATUS result
Counting direction based on Mode

Count once/repetitively Pulses field

Binary/BCD counting binary counting only

Advanced Micro Devices and vendors of Am9513-based boards generally designate
the Am9513’s 19 basic operating modes by capital letters, A through X. DriverLINX
supports all these modes using combinations oMbde, Gate, andPulses fields.

The following sections describe the Am9513'’s basic modes using DriverLINX
terminology.

Operating Mode Descriptions

Mode A: Software-Triggered Strobe with No Hardware
Gating

Mode A is one of the simplest operating modes. The counter cGlot& edges
when it receives a START (arm) command. On each TC, the counter reloads the
Period value and automatically disarms itself. Counting resumes when the
application issues a STOP followed by a new START command.

Mode Period onCount Pulses Gate
ONESHOT vaue 0 1 DISABLED

Mode B: Software-Triggered Strobe with Level Gating

Mode B is identical to Mode A except that the counter only cdbldsk edges

when the programmed gate input is active. The application must arm the counter
with a START command before counting can occur. Once armed, the counter counts
all Clock edges that occur while the gate is active; the counter disregards those
edges that occur while the gate is inactive. This feature permits the gate to turn the

118 « Hardware Reference DriverLINX Counter/Timer User’s Guide

count process on and off. On each TC, the counter reloads the Period value and
automatically disarmsitself, inhibiting further counting until the application issues a
STOP followed by anew START command.

Mode Period onCount Pulses Gate

ONESHOT value 0 1 level

Mode C: Hardware-triggered Strobe

Mode C isidentical to Mode A except that an armed counter does not begin counting
until it detects a gate edge at the Gate input.

The application must arm the counter with a START command before the
application of atriggering gate edge; the counter ignores gate edges in the disarmed
state. The counter starts counting on the first Clock edge after the triggering gate
edge and continues until TC. At TC, the counter reloads the Period value and
automatically disarmsitself. Counting then remains inhibited until the application
applies a STOP followed by anew START command and the counter then detects a
new gate (in that order).

Note that after application of atriggering gate edge, the counter disregards the Gate
input for the remainder of the count cycle. This process differs from that of Mode B
where the Gate can be modulated throughout the count cycle to stop and start the

counter.
Mode Period onCount Pulses Gate
ONESHOT value 0 1 edge

Mode D: Rate Generator with No Hardware Gating

Applications typically use Mode D for frequency generation. In this mode the Gate
input does not affect counter operation. Once STARTed, the counter countsto TC
repetitively. On each TC the counter reloads the Period value; hence the Period
value determines the time between TCs.

Mode Period onCount Pulses Gate
RATEGEN value 0 0 DISABLED
SQWAVE value 0 0 DISABLED

RATEGEN and SQWAVE both use Mode D, but the default output for RATEGEN
isactive high TC and for SQWAVE is TC toggled.

Mode E: Rate Generator with Level Gating

Mode E isidentical to Mode D except that the counter only counts those Clock
edges that occur while the Gate input is active. This feature allows hardware to
enable and disable the counting process.

DriverLINX Counter/Timer User’s Guide Hardware Reference « 119

Mode Period onCount Pulses Gate
RATEGEN value 0 0 level
SQWAVE value 0 0 level

RATEGEN and SQWAVE both use Mode E, but the default output for RATEGEN
isactive high TC and for SQWAVE is TC toggled.

Mode F: Non-Retriggerable One-shot

Mode F provides a non-retriggerable, one-shot timing function. The application must
START (arm) the counter before it can function. Application of a gate edge to the
armed counter enables counting. When the counter reaches TC, it reloadsitself from
the Period value. The counter then stops counting awaiting a new gate edge.

Note that unlike Mode C, Mode F does not need a new START command after TC,
but it does require a new gate edge. After application of atriggering gate edge, the
counter disregards the Gate input until TC.

Mode Period onCount Pulses Gate

ONESHOT value 0 0 edge

Mode G: Software-Triggered, Delayed Pulse One-shot

In Mode G, the Gate does not affect the counter’s operation. Once STARTed
(armed), the counter counts to TC twice and then automatically disarms itself. For
most applications, the counter initially loads Beriod value. Upon counting to the
first TC, the counter will reload itself from tleenCount value. Counting proceeds
until the second TC when the counter reloads itself fronfPthréod value and
automatically disarms itself, inhibiting further counting. Applications can resume
counting by issuing a STOP followed by a new START command.

Applications can generate a software-triggered, delayed pulse one-shot by specifying
the TC toggled output mode. TReriod value controls the delay from the START
command until the output pulse starts. BimCount value controls the pulse

duration.
Mode Period onCount Pulses Gate
PULSEGEN value vaue 1 DISABLED

Mode H: Software-Triggered, Delayed Pulse One-shot with
Hardware Gating

Mode H is identical to Mode G except tBate input qualifies whictClock edges

the counter counts. The application must START (arm) the counter for counting to
take place. Once armed, the counter countSlaltk edges that occur while the

Gate is active and disregards thdSkock edges that occur while ti@@ate is

inactive. This permits th&ate to turn the count process on and off.

120 « Hardware Reference DriverLINX Counter/Timer User’s Guide

Aswith Mode G, the counter reloads using the onCount value on the first TC and
reloads using the Period value and disarms on the second TC. Mode H alows the

Gate to control the extension of both the initial output delay time (Period) and the
pulse width (onCount).

Mode Period onCount Pulses Gate
PULSEGEN value value 1 level

Mode I: Hardware-triggered, Delayed Pulse Strobe

Mode | isidentical to Mode G except that the counter does not begin counting until a
STARTed (armed) counter detects a gate edge. The application must START the
counter before application of the triggering gate edge. The counter disregards gate
edges when disarmed. An armed counter starts counting on the first Clock edge
after the triggering gate edge. Counting then proceeds in the same manner asin
Mode G. After the second TC, the counter disarmsitself. To restart counting, issue a
STOP followed by a START command and a gate edge (in that order).

Note that after application of atriggering gate edge, the counter disregards the Gate
input until the second TC. This sequence differs from Mode H where modulating the
Gate throughout the count cycle stops and starts the counter.

Mode Period onCount Pulses Gate
PULSEGEN value value 1 edge

Mode J: Variable Duty Cycle Rate Generator with No
Hardware Gating

Mode Jfindsits greatest use in frequency generation with variable duty cycle
reguirements. Once STARTed (armed), the counter counts continuously until it
receives a STOP command. On the first TC, the counter will reload using the
onCount value. Counting then proceeds until the second TC when the counter loads
the (Period - onCount) value. Counting continues with the reload value alternating
on each TC until the counter receives a STOP command.

Generate a variable duty cycle output by specifying one of the TC toggled output
modes. The Period and onCount values then directly control the output duty cycle.
For high resolution, use relatively high count values.

Mode Period onCount Pulses Gate
VDCGEN value vaue 0 disabled

Mode K: Variable Duty Cycle Rate Generator with Level
Gating
Mode K isidentical to Mode J except that the counter only counts Clock edges

when the Gate is active. The application must START (arm) the counter for
counting to occur. Once armed, the counter counts all Clock edges that occur while

DriverLINX Counter/Timer User’s Guide Hardware Reference « 121

the Gate is active and disregards those Clock edges that occur while the Gate is
inactive. Thisfeature permits the Gate to turn the count process on and off.

Asduring Mode J operation, the counter alternates the reload source on each TC,
starting with the onCount value on thefirst TC after any START command. Use
one of the TC toggled output modes to allow the Gate to modulate the duty cycle of
the output waveform during both the high and low portions.

Mode Period onCount Pulses Gate

VDCGEN value value 0 level

Mode L: Hardware-Triggered Delayed Pulse One-shot

Mode L issimilar to Mode J except that counting does not begin until an armed
counter detects a gate edge. START (arm) the counter before applying the triggering
gate edge. Disarmed counters ignore gate edges.

The counter starts counting Clock edges after the triggering gate edge, and counting
proceeds until the second TC. Note that after the application of atriggering gate
edge, the counter disregards the Gate input for the remainder of the count cycle.
Because of thisfeature, Mode L differs from Mode K, which allows the Gate to
modul ate the count cycle to stop and start the counter.

On thefirst TC after application of the triggering gate edge, the counter reloads the
onCount value. On the second TC, the counter reloads the Period value and stops
counting until it detects a new gate edge. Note that unlike Mode K, the counter
reguires new gate edges after every second TC to continue counting.

Mode Period onCount Pulses Gate

PULSEGEN value value 0 edge

Mode N: Software-Triggered Strobe with Level Gating and
Hardware Retriggering

Mode N provides a software-triggered strobe with level gating. The strobe isalso
hardware-retriggerable. The application must issue a START (arm) command to the
counter before it can begin counting. Once armed, the counter counts all Clock
edges that occur while the Gate is active and disregards Clock edges that occur
while the Gate isinactive. Thisfeature permits the Gate to turn the count process
on and off.

After receiving a START command and an active gate, the counter countsto TC.
Upon reaching TC, the counter reloads the Period value and automatically disarms
itself inhibiting further counting. Counting resumes upon receipt of a STOP followed
by anew START command.

All active-going gate edges issued to an armed counter cause aretrigger operation.
Upon application of the gate edge, the counter saves the current count in the Hold
register. On the first qualified Clock edge after application of the retriggering gate
edge, the counter loads the Period value. Counting resumes on the second qualified
Clock edge after the retriggering gate edge. Qualified Clock edges are active-going
edges that occur while the gateis active.

122 « Hardware Reference

DriverLINX Counter/Timer User’s Guide

Mode Period onCount Pulses Gate

RETRIGONESHOT | value 0 1 level

Mode O: Software-Triggered Strobe with Edge Gating and
Hardware Retriggering

Mode O is similar to Mode N except that an armed counter does not begin counting
until it detects an active-going gate edge. The gate level does not modulate counting.

The application must START (arm) the counter before application of the triggering
gate edge. A disarmed counter ignores gate edges. Irrespective of the gate level, the
counter counts all Clock edges after receiving the triggering gate edge until the first
TC. Onthefirst TC, the counter reloads the Period value and disarms. To initiate a
new counting cycle, apply a STOP command followed by a new START command
and a new gate edge.

Unlike operationin Modes C, F, |, and L, which disregard the Gate input after
counting starts, all active-going gate edges, including the first gate edge used to start
the counter, retrigger the count process. On each retriggering gate edge, the counter
saves the current count in the Hold register. On the first Clock edge after the
retriggering gate edge, the counter loads the Period value. Counting resumes on the
second Clock edge after aretrigger.

Mode Period onCount Pulses Gate

RETRIGONESHOT | value 0 1 edge

Mode Q: Rate Generator with Synchronization (Event
Counter with Auto-Read/Reset)

Mode Q provides a rate generator with synchronization or an event counter with
auto-read/reset. The application must first issue a START (arm) command before
counting can occur. Once armed, the counter counts all Clock edges that occur
while the Gate is active and disregards those edges occurring while the Gate is
inactive. This permits the Gate to turn the count process on and off.

After receiving a START command and an active gate, the counter countsto TC
repetitively. On each TC, the counter reloads the Period value. At any time, an
active-going gate edge at the Gate input retriggers the counter. The retriggering gate
edge transfers the contents of the counter into the Hold register. The first qualified
Clock edge after the retriggering gate edge transfers the Period value into the
counter. Counting resumes on the second qualified Clock edge after the retriggering
gate edge. Qualified Clock edges are active-going edges that occur while the Gate

is active.
Mode Period onCount Pulses Gate
RETRIGRATEGEN | value 0 0 level
RETRIGSQWAVE | load 0 0 level

DriverLINX Counter/Timer User’s Guide

Hardware Reference 123

Mode R: Retriggerable One-shot

Mode R issimilar to Mode Q except that Mode R uses edge gating rather than level
gating. In other words, rather than use the gate level to qualify which Clock edgesto
count, Mode R uses gate edges to start the counting operation.

The application must START (arm) the counter before application of atriggering
gate edge. A disarmed counter ignores applied gate edges. After application of a gate
edge, an armed counter counts all Clock edges until TC irrespective of the gate
level. On thefirst TC, the counter reloads the Period value and stops. The counter
restarts counting after detecting a new gate edge. All applied gate edges, including
the first used to trigger counting, initiate aretrigger operation. Upon application of a
gate edge, the counter saves its current count in the Hold register. On the first Clock
edge after the retriggering gate edge, the counter reloads the Period value. Counting
resumes on the second Clock edge after the retriggering gate edge.

Mode Period onCount Pulses Gate

RETRIGONESHOT | value 0 0 edge

Mode S Delayed Pulse One-shot with Level-selected
Reloading

In Mode S, the Gate input determines the reload Clock for armed or unarmed
counters and for TC-initiated reloads. The Gate input in Mode S only selects the
reload source; it does not start or modulate counting. When the Gate is low, the
counter reloads the Period value; when the Gate is high, the counter reloads the
onCount value. Once STARTed (armed), the counter countsto TC twice and then
disarmsitself. On each TC, the counter reloads the gate-selected source. Following
the second TC, the counter requires anew START command to begin a new
counting cycle.

Mode Period onCount Pulses Gate

FSKGEN value vaue 1 DISABLED

Mode V: Frequency-shift Keying

Mode V provides frequency-shift keying modulation capability. Gate operation in
this mode isidentical to that of Mode S. If the Gate islow, CONFIGURE or
START commands or a TC-induced reload transfers the Period value to the
counter. If the Gate is high, reloads occur from the onCount value. The polarity of
the Gate selects only the reload source; it does not start or modul ate counting.

Once armed, the counter counts repetitively to TC. On each TC, the Gate polarity
selects the counter reload source. Counting continues in this manner until the
application issues a STOP command. To obtain frequency-shift keying, specify the
TC toggled output mode. Modulating the Gate input switches the output
frequencies.

124 « Hardware Reference

DriverLINX Counter/Timer User’s Guide

Mode

Period

onCount

Pulses

Gate

FSKGEN

value

value

0

DISABLED

Mode X: Hardware Save

Mode X provides a hardware sampling of the counter contents without interrupting
the count. A START command arms the counter. Once armed, a gate edge starts the
counting operation. Disarmed counters ignore gate edges. After application of the
triggering gate edge, the counter counts all qualified Clock edges until the first TC
irrespective of the gate level. Gate edges applied during the counting sequence store
the current count in the Hold register, but they do not interrupt the counting
sequence. On each TC, the counter reloads the Period value and stops. Subsequent
counting requires a new triggering gate edge. Counting resumes on the first Clock
edge following the triggering gate edge.

Mode Period onCount Pulses Gate
RATEGEN value 0 0 edge
SQWAVE value 0 0 edge

DriverLINX Counter/Timer User’s Guide

Hardware Reference 125

Glossary of Terms

ActiveX

Component software object using Microsoft's Component Object Model
specification for 16- and 32-bit controls. ActiveX controls were formerly called
OCX controls.

API

Application Programming Interface—the properties and methods used to
communicate with a software service.

COM

Component Object Model is a specification of a binary standard for reusable
software objects.

DMA

Direct Memory Access provides a direct device to memory hardware channel that
does not require software overhead to transfer acquired data.

Kernel Mode

The privileged mode in which the operating system runs system software such as
device drivers. Kernel mode software has complete access to memory and hardware
resources.

Logical Channel

A DriverLINX-assigned number for a data channel of a Logical Subsystem.

Logical Device

A user-assigned number that a DriverLINX driver uses to designate an installed
hardware device.

DriverLINX Counter/Timer User’s Guide Glossary of Terms « 127

Logical Device Descriptor

A DriverLINX data structure that contains hardware specifications for a Logical
Device.

Logical Subsystem

A set of related hardware resources on a data-acquisition device. DriverLINX
abstractly characterizes al data-acquisition devices as consisting of seven possible
subsystems—device, analog input, analog output, digital input, digital output, and
counter/timer.

nibble

A nibble is 4 bits or ¥ byte.

OCX

OLE Custom Controls are now called ActiveX custom controls.

OLE

Object Linking and Embedding is an older term for Microsoft's ActiveX technology.

Service Request

A DriverLINX data structure that completely specifies the parameters for all data-
acquisition tasks.

TC

“Terminal Count” The Am9513 defines TC as that period of time when the counter
contents would have been zero if the internal counter circuitry had not transferred an
external value into the counter.

User Mode

The mode in which the operating system runs user applications. User mode software
has restricted access to memory, other processes, and hardware.

VBX

Component software object using the 16-bit Visual Basic Custom Control
specification. Many 16-bit C/C++ compilers and Delphi 1.0 also support VBX
controls.

128 « Glossary of Terms DriverLINX Counter/Timer User’s Guide

Index

1

16-bit 19-20, 31-32, 59, 81, 83, 87, 93, 97, 1024,
107-9, 116

3

32-bit 15, 23, 26, 44, 55, 58-59, 82-83, 87-89

A

ActiveX 18, 35, 39, 44, 59
Address 32
Advanced Micro Devices 118
Am9513 10, 19-21, 117, 23-25, 55, 65, 67, 79-82, 117,
84, 87-88, 117

Advanced Micro Devices 118

counter output 25, 35-36, 55, 80, 87, 93, 97, 102, 107

letter designations for modes 21

Mode A 118

Mode B 118

Mode C 119-20

Mode D 119

Mode E 119

Mode F 120

Mode G 120-21

Mode H 120-21

Mode J 121-22

Mode K 121-22

Mode L 122

Mode N 122-23

Mode O 123

Mode Q 123-24

Mode R 124

Mode S 124

Mode V 124

Mode X 125

B
background tasks 37, 49, 53, 60

block 1/O transfers 33
block transfer 38
BufferFilled 27, 54
BurstGen 25-26, 55

C

C/C++ interface 18, 44
Clock property
external 23
gate 23
internal 23-24
source 23
terminal count 23
CloseDriverLINX 45
configuration 9, 15, 28, 41, 46
Configure 28-29, 40, 64
configuring a counter/timer 36, 57, 64
configuring channels for a group 38
connecting to a driver 36
control interface 18, 35
converting between counts and time 36, 37, 56, 58, 86
Count 25, 55
Count32 26, 55, 82-85
Count64 26, 55, 82-85
counter output 25, 35-36, 55, 80, 87, 93, 97, 102, 107
counter/timer hardware 19-21, 28-30, 61, 64, 79
counter/timer model 21, 35, 113, 116, 118
counter/timer output
default 55
creating tasks 26
CriticalError 27—-28, 53-54
CTM-05 30-32
CTM-10 30-31, 32, 43, 65, 67

D

data buffer 17, 28-29, 38, 42-43, 60, 63, 68, 75, 80
Datalost 27-28, 53-54
Default 25, 27, 55
default counter/timer output 55
Delay property 63
delayed pulse 20, 103-4, 120-22, 124
Delphi 44
Detect 49
device drivers 9, 11, 13-15, 44-46, 44-46, 48
device initialization 36, 50
DI_EXTCLK 62
digital event 62-63, 72
Digital Event
Mask 62—63, 72—-73
Match 62, 72
Pattern 62—63, 72
Digital Events
Delay 63
using 42, 62-63, 68

DriverLINX Counter/Timer User’s Guide

Index « 129

digital hardware 31 OTHER 29, 50

digital 1/0 POLLED 29, 65
block transfer 38 DriverLINX Operation
single value 38 Configure 28-29, 40, 64
direct hardware 1/0 13 Initialize 28, 40, 51, 52
Disabled 24 DriverLINX Technical Reference Manual 9, 15, 17-18,
DisableServiceStartDone 53 39, 41, 48, 52, 63
Distribution Disks 9, 15 DriverLINXSR 47, 49-51, 52-54, 57, 67, 71, 74, 78,
Divider 25, 55 85, 91, 95, 100, 106, 112
DL_MESSAGEBOX 49 DRVLINX.H 39, 44
DL_SetServiceRequestSize 51, 52, 66, 70, 73, 7677, DRVLNX32.DLL 44
84, 90, 94, 99, 105, 111
DLCODES.H 44 E
DLL 11, 44-45, 59
DLSecs2Tics 59 edge gating 21, 102, 108, 123-24
DLTics2Secs 59 Edit a Service Request 36
DLXOCX32.0CX 44 EDIT flag 47
DMA 39 Edit Service Request dialog 36, 39, 47
DOS 13-14 EnableAllEvents 53-54
DriverLINX Enabled 24
counter/timer model 21, 35, 113, 116, 118 Error reporting 36
creating tasks 26 event counting 19, 23, 35, 37, 79-85
detect hardware 49 non-repetitive 81-83
Events 27-28, 27-28, 41, 27-28, 52, 54, 27-28, 60, repetitive 81-83
27-28, 62, 27-28 Events Group 17, 41, 57, 60-61, 65, 67-68, 72, 75, 80,
hardware model 9, 15 86, 93, 96, 101, 107
hardware sharing 26 examples
interfacing 35, 43 DisableServiceStartDone 53
Logical Device Descriptor 15-17, 41 EnableAllEvents 53-54
Logical Driver 46 InitCounterTimers 52
Logical Subsystem 17-18, 39, 46, 75 OnDLMessage 54
messages 16-18, 27, 36, 52-54, 60, 48-49, 52-54, 60, ReadChannel 70-71
6263 ReadChannelBuff 76, 78
Operations 37, 39-40, 48-50, 52, 57, 60, 61-62, 64— ReadCounterTimer 56-57
65, 67, 68, 72, 75, 79, 86, 92, 96, 101, 107 ShowDriverLINXMessage 48-49
programming model 9, 15-16, 19 ShowEditSR 47
Service Request 15-17, 26-29, 36—-37, 39, 40-43, 46— StartEventCount 84-85
52, 53-54, 56-58, 60, 61-69, 73, 79-80, 84-86, StartFrequency 111-12
89-91, 93-97, 98-100, 102, 104-6, 107, 110-12, StartFrequencyMeasurement 90-91
113, 116, 117 StartIntervalMeasurement 94—95
software license 7 StartPeriodPulseWidthMeasurement 99-100
task model 26 StartPulseStrobe 1056
taskld 27, 49 StopDriverLINXTask 49, 56-57
DriverLINX 4.0 Installation and Configuration Guide 9 WriteBits 73
DriverLINX error 36, 44, 48 WriteChanBuf 77-78
DriverLINX messages WriteChannel 70-71
BufferFilled 27, 54 external interrupt input line 42, 61-62, 68
CriticalError 27-28, 53-54 ExternalNE 23
DatalLost 27-28, 53-54 ExternalPE 23
ServiceDone 27-28, 53-54
ServiceStart 27-28, 53-54 F
StartEvent 27
StopEvent 27 foreground tasks 37, 53
TimerTic 27-29, 54 Freq 25, 55
DriverLINX Mode Freq32 26, 55, 88-91
INTERRUPT 29, 60-61, 67 FregRatio 26, 55

130 « Index DriverLINX Counter/Timer User’s Guide

frequency generation 19-20, 23, 35, 37, 107-12, 107—
12,119,121
frequency measurement 23, 26, 35, 37, 85, 87-91
frequency-shift keying 21, 26, 55, 109, 124
FSK 21, 26, 55, 109, 124
FskGen 26, 55, 103, 109, 124-25
FSKGEN 21, 26, 55, 109, 124
functions
CloseDriverLINX 45
Sec2Tics 58
Tics2Sec 58

G

Gate property 24, 97
disabled 24
enabled 24
HiTcNm1 24
no connection 24
gatel 23
gating
edge 21, 102, 108, 123-24
hardware 20, 81-83, 87-88, 102-3, 104, 108-9, 118
19, 120
level 20, 81-83, 88, 97, 102, 108-9, 114, 118-19,
121-24
group tasks 29, 37, 63-64, 56-57, 63-64, 63-64, 65-68
interrupt mode 38, 43, 63, 67
polled 38, 43, 63—-67

H

hardware gating 20, 81-83, 87-88, 102-3, 104, 108-9,
118-19, 120

hardware model 9, 15

hardware sharing 26

hardware-triggered 102-3, 104, 115, 119, 121-22

HiActive 25, 55

HiTcNm1 24

HiToggled 25, 55

Hiz 25

hwnd 45, 51, 52, 54, 66, 70, 73, 7677, 84, 90, 94, 99,
105, 111

I/O address 15
InitCounterTimers 52
Initialize 28, 40, 51, 52
Intel 8254 10, 19-20, 19, 23-25, 55, 65, 67, 113
interfacing to DriverLINX 35, 43
Internall 23-24
interrupt
external input 42, 61-62, 68
INTERRUPT 29, 60-61, 67
interrupt mode groups 38, 43, 63, 67

interval measurement 23, 35, 37, 92-95, 92-95, 97
ioValue property 69, 73

K
KMBCTM 45

L

LDD 17

letter designations 21

level gating 20, 81-83, 88, 97, 102, 108-9, 114, 118-
19, 121-24

library file format 44

LoActive 25, 55

Logical Channel 16, 23-24, 25, 29, 31-33, 38, 40-43,
46, 56-64, 67-69, 72-73, 75, 84, 87, 89, 93-94,
98, 104, 110

Logical Device 15-17, 39, 41, 46, 50, 52, 57-61, 62,
65, 67-68, 72, 75, 79, 86, 92, 96, 101, 107

Logical Device Descriptor 15-17, 41

Logical Driver 46

Logical Subsystem 17-18, 39, 46, 75

LoToggled 25, 55

LoZ 25

M

Mask 62—-63, 72—-73
Match 62, 72
MESSAGEBOX 48-49
messages 16-18, 27, 36, 52-54, 60, 48—49, 52-54, 60,
62-63
BufferFilled 27, 54
CriticalError 27-28, 53-54
Datalost 27-28, 53-54
ServiceDone 27-28, 53-54
ServiceStart 27-28, 53-54
StartEvent 27
StopEvent 27
TimerTic 27-29, 54
methods
DLSecs2Tics 59
DLTics2Secs 59
Refresh 18, 47, 49-51, 52, 57, 67, 71, 74, 78, 85, 91,
95, 100, 106, 112
MetraByte 30, 45
CTM-05/A 30-32
CTM-10 30-31, 32, 43, 65, 67
MFC 54
Microsoft Foundation Classes 54
Mode 0 55, 114-17
Mode 155, 114, 116-17
Mode 2 24, 114-15, 117
Mode 3 115
Mode 4 55, 115

DriverLINX Counter/Timer User’s Guide

Index « 131

Mode 5 55, 115
Model 121
Mode property 25-26, 37
BurstGen 25-26, 55
Count 25, 55
Count32 26, 55, 82-85
Count64 26, 55, 82—-85
Divider 25, 55
Freq 25, 55
Freg32 26, 55, 88-91
FreqRatio 26, 55
FskGen 26, 55, 103, 109, 124-25
OneShot 26, 55, 60, 102-3
PulseGen 26, 55, 103-6, 116, 120-22
Pulsewd 25, 55, 97-100
RateGen 25-26, 55, 60-61, 108-9, 115, 117, 119, 125
RetrigOneShot 105-6, 114-15, 123-24
RetrigRateGen 123
RetrigSgWave 123
SplitClk 25, 55
SgWave 25-26, 55, 108-9, 115, 117, 119, 125
VDCGen 25, 55, 109-10, 117, 121
model
counter/timer 21, 35, 113, 116, 118
MS-DOS 13-14

N

NoConnect 24
non-repetitive counting 81-83
non-retriggerable 20, 102, 104, 116, 120

O

OCX 18, 39, 44-45
OLE 18, 44
OnCount 22, 58, 87, 102, 113, 116-18, 122
OnDLMessage 54
one-shot 19-20, 23, 26, 55, 1014, 114, 116-17, 120,
122,124
retriggerable 19-20, 26, 55, 103, 114, 116, 120, 124
OneShot 26, 55, 60, 102-3
Open DriverLINX dialog 44—-45
Operations 37, 3940, 48-50, 52, 57, 60, 61-62, 64—65,
67, 68, 72, 75, 79, 86, 92, 96, 101, 107
OTHER 29, 50
output polarity 20
Output property 25, 80, 87, 93, 97, 102, 107
Default 25, 27, 55
HiActive 25, 55
HiToggled 25, 55
Hiz 25
LoActive 25, 55
LoToggled 25, 55
Loz 25
Toggled 25, 55

P

Pattern 62—63, 72
period and pulse width measurement 23, 35, 37, 96
period measurement 96—97
POLLED 29, 65
polled mode groups 38, 43, 63—67
programming model 9, 15-16, 19
Property
Clock 23, 84, 87, 89, 93, 97, 102, 107
gate 24, 97
output 25, 80, 87, 93, 97, 102, 107
pulse generation 23, 101
delayed 20, 103-4, 120-22, 124
delayed one-shot 19-20, 23, 26, 55, 101-4, 114, 116—
17,120, 122,124
pulse width measurement 23, 25, 35, 37, 9697, 55, 96—
97, 100
PulseGen 26, 55, 103-6, 116, 120-22
PulseWd 25, 55, 97-100

R

rate event properties 35, 41, 81-83, 87-88, 93, 97, 103—
4, 109-10

rate generator 19, 20, 25-26, 55, 80, 87, 93, 97, 102,
107-10, 114, 119, 121-23

variable duty cycle 21, 25, 55, 109-10, 121

RateGen 25-26, 55, 60-61, 108-9, 115, 117, 119, 125

ReadChannel 70-71

ReadChannelBuff 76, 78

ReadCounterTimer 56-57

Refresh 18, 47, 49-51, 52, 57, 67, 71, 74, 78, 85, 91,
95, 100, 106, 112

repetitive counting 81-83

Req_device 51, 52, 67, 85, 91, 95, 100, 106, 112

Reqg_DLL_name 45

Req_mode 51, 52, 67, 71, 74, 78, 85, 91, 95, 100, 106,
112

Req_op 47, 49-51, 52, 57, 67, 71, 74, 78, 85, 91, 95,
100, 106, 112

Req_op_edit 47

Req_subsystem 51, 52, 67, 71, 74, 78, 85, 91, 95, 100,
106, 112

Request Group 17, 39, 50, 52, 57, 60, 61, 65, 66—68,
72,75, 79, 84, 86, 90, 92, 94, 96, 99, 101, 105,
107, 111

Res_result 47, 49-51, 52, 57, 67, 71, 74, 78, 85, 91, 95,
100, 106, 112

Res_Tim_count 57

Res_Tim_status 57

Results Group 17, 56, 69, 73

retriggerable one-shot 19-20, 26, 55, 103, 114, 116,
120, 124

RetrigOneShot 105-6, 114-15, 123-24

RetrigRateGen 123

132 « Index

DriverLINX Counter/Timer User’s Guide

RetrigSqWave 123

S

Scientific Software Tools 7-8
Sec2Tics 58
Select Group 17, 69, 73, 75
SelectDriverLINX 45-46
selecting a driver 36, 46
Service Request 15-17, 26-29, 36-37, 39, 40-43, 46—
52, 53-54, 56-58, 60, 61-69, 73, 79—-80, 84-86,
89-91, 93-97, 98-100, 102, 104-6, 107, 110-12,
113, 116, 117
DL_SetServiceRequestSize 51, 52, 66, 70, 73, 76-77,
84, 90, 94, 99, 105, 111
EDIT flag 47
hwnd 45, 51, 52, 54, 66, 70, 73, 76—77, 84, 90, 94,
99, 105, 111
Refresh 18, 47, 49-51, 52, 57, 67, 71, 74, 78, 85, 91,
95, 100, 106, 112
Req_device 51, 52, 67, 85, 91, 95, 100, 106, 112
Req_mode 51, 52, 67, 71, 74, 78, 85, 91, 95, 100,
106, 112
Req_op 47, 49-51, 52, 57, 67, 71, 74, 78, 85, 91, 95,
100, 106, 112
Req_op_edit 47

Req_subsystem 51, 52, 67, 71, 74, 78, 85, 91, 95, 100,

106, 112
Res_result 47, 49-51, 52, 57, 67, 71, 74, 78, 85, 91,
95, 100, 106, 112

Res_Tim_count 57

Res_Tim_status 57

taskld 27, 49
ServiceDone 27-28, 53-54
ServiceStart 27-28, 53-54
ShowDriverLINXMessage 48-49
ShowEditSR 47
single value 1/0 38
software license 7
software-triggered 102-4, 114-15, 118, 120, 122-23
Sourcel 23
SplitClk 25, 55
SgWave 25-26, 55, 108-9, 115, 117, 119, 125
SQWAVE 25-26, 55, 108-9, 115, 117, 119, 125
Start Event 27, 69, 72, 75, 80, 86, 93, 97, 101, 107
StartEvent 27
StartEventCount 84—-85
StartFrequency 111-12
StartFrequencyMeasurement 90-91
StartintervalMeasurement 94—-95
StartPeriodPulseWidthMeasurement 99-100
StartPulseStrobe 105-6
status polling 36-38, 36, 37, 56, 6566, 65
StopDriverLINXTask 49, 56-57
StopEvent 27
stopping a task 36, 49

strobe 19-21, 26, 30, 35, 37, 101-6, 55, 101-6, 114-15,
118-19, 121, 122-23

T

task model 26
taskFlags 53
taskld 27, 49
Tasks
background 37, 49, 53, 60
configuring a counter/timer 36, 57, 64
configuring channels for a group 38
connecting to a driver 36
converting between counts and time 36, 37, 56, 58, 86
counter output 25, 35-36, 55, 80, 87, 93, 97, 102, 107
device initialization 36, 50
Edit a Service Request 36
error reporting 36
event counting 19, 23, 35, 37, 79-85
foreground 37, 53
frequency generation 19-20, 23, 35, 37, 107-12, 107—-
12,119,121
frequency measurement 23, 26, 35, 37, 85, 87-91
group 29, 37, 63-64, 56-57, 63—64, 63—64, 65—68
interval measurement 23, 35, 37, 92-95, 92-95, 97
period and pulse width measurement 23, 25, 35, 37,
96-97, 37, 55, 96-97, 9697, 100
pulse generation 23, 101
selecting a driver 36, 46
single value 1/0O 38
status polling 36—38, 36, 37, 56, 65-66, 65
stopping 36, 49
TC 25, 114-15, 118-25
TCNm1 23
terminal count
TC 25, 114-15, 118-25
Terminal count 23-24, 42, 61-62, 67-68, 72, 75, 80,
84, 86, 93, 96, 101, 107, 114, 116-17
Terminal count signal 23
Tics2Sec 58
TimerTic 27-29, 54
Timing 19-21, 41, 57, 60-61, 62, 65, 67-68, 72, 75, 80,
84, 86, 90, 92-93, 94, 96, 99, 101, 105, 107, 111,
117,120
Toggled 25, 55
triggering
hardware 102-3, 104, 115, 119, 121-22
non-retriggerable 20, 102, 104, 116, 120
software 102—4, 114-15, 118, 120, 122-23

\Y,

variable duty cycle rate generator 21, 25, 55, 109-10,
121

VBX 18, 35, 45, 59

VDCGen 25, 55, 109-10, 117, 121

DriverLINX Counter/Timer User’s Guide

Index ¢ 133

VDCGEN 25, 55, 109-10, 117, 121
Visual Basic 13, 18, 35, 44, 47-49, 51, 52-54, 57, 67,
71, 74,78, 85, 91, 95, 100, 106, 112

w

Windows 3.x 13, 15
Windows 95 13, 15, 44
Windows NT 13-15, 44
WriteBits 73
WriteChanBuf 77-78
WriteChannel 70-71

134 « Index DriverLINX Counter/Timer User’s Guide

	Preface�
	Software License and Software Disclaimer of Warranty�
	About DriverLINX�
	About This Programming Guide�
	Conventions Used in This Manual�

	Why Use a Counter/Timer Device Driver�
	Using Direct Hardware I/O�
	Advantages of Device Drivers�

	Introducing DriverLINX�
	About DriverLINX�
	DriverLINX Hardware Model�
	DriverLINX Driver�
	Logical Devices�
	Logical Subsystems�
	Logical Channels�

	DriverLINX Programming Model�
	Logical Device Descriptors�
	Service Requests�
	C/C++ Interface�
	Control Interface�

	Summary�

	Counter/Timers and DriverLINX�
	Counter/Timer Hardware Description�
	Intel 8254�
	KPCI-3140 Counter/Timer Chip�
	Am9513�

	DriverLINX Counter/Timer Model�
	
	Clocks�
	Gates�
	Outputs�
	Modes�

	DriverLINX Task Model�
	Hardware Sharing�
	Creating Tasks�
	Monitoring and Stopping Tasks�
	DriverLINX Events�
	DriverLINX Operations�
	DriverLINX Modes�
	Individual and Group Tasks�

	Mapping Logical Channels to Counter/Timer Hardware Channels�
	Digital I/O Hardware�
	Mapping Logical Channels to Digital Hardware Channels�
	Properties of Logical Channels�
	Combining or Splitting Logical Channels�
	Implementation Notes�

	Programming Counter/Timers with DriverLINX�
	DriverLINX Counter/Timer Operations�
	DriverLINX Tasks for All Subsystems�
	DriverLINX Tasks for Counter/Timer Subsystem�
	Foreground Tasks�
	Background Tasks�
	Group Tasks�
	DriverLINX Tasks for Digital Subsystems�

	Using DriverLINX's Service Requests�
	Properties Common to All Service Requests�
	Modes and Operations for Counter/Timers�
	Other Mode�
	Polled Mode�
	Interrupt Mode�

	Using Events to Control Service Requests�
	Events for the Counter/Timer�
	Specifying Counter/Timer Channels in a Service Request�
	Specifying Data Buffers in a Service Request�

	Interfacing to DriverLINX�
	
	Interface with C/C++�
	Interface with the Custom Control�

	Opening and Closing a DriverLINX Device Driver�
	
	Open a Driver in C/C++�
	Open a Driver with the Custom Control�
	Close a Driver in C/C++�
	Close a Driver with the Custom Control�

	Selecting a DriverLINX Device Driver�
	
	Selecting a Driver in C/C++�
	Selecting a Driver with the Custom Control�

	Displaying the Edit Service Request Dialog�
	
	Display Edit Service Request Dialog Using C/C++�
	Display Edit Service Request Dialog Using Visual Basic�

	Reporting a DriverLINX Error�
	
	Display DriverLINX Message Box Using C/C++�
	Display DriverLINX Message Box Using Visual Basic�

	Stopping A DriverLINX Task�
	
	Stopping a Task Using C/C++�
	Stopping a Task Using Visual Basic�

	Initializing the Device�
	
	Initialize the Device Using C/C++�
	Initialize the Device Using Visual Basic�

	Initializing a Counter/Timer Subsystem�
	
	Initialize a Subsystem Using C/C++�
	Initialize a Subsystem Using Visual Basic�

	Using Messages and Events�
	Events for Foreground Tasks�
	Disable ServiceStart and ServiceDone Using C/C++�
	Disable ServiceStart and ServiceDone Using Visual Basic�

	Events for Background Tasks�
	Enable and Use Messages Using C/C++�
	Enable and Use Messages Using Visual Basic�

	Counter Output�
	Status Polling a Counter/Timer�
	
	Polling a Counter/Timer Using C/C++�
	Polling a Counter/Timer Using Visual Basic�

	Configuring a Counter/Timer Channel�
	Converting Between Counts and Time�
	
	Time Conversion in C/C++�
	Time Conversion Using the Custom Control�

	Using Background Tasks�
	Using a Counter/Timer to Generate Clock Messages�
	Storing the Counter/Timer Value at Each Interrupt�
	Using the External Interrupt Input Line�
	Using Digital Start and Stop Events�

	Controlling Group Tasks�
	Select Channels�
	Polled Mode Groups�
	Starting a Polled Mode Group Using C/C++�
	Starting a Polled Mode Group Task Using Visual Basic�

	Interrupt Mode Groups�

	Using Digital I/O Tasks�
	Reading or Writing a Single Digital Value�
	Read or Write a Single Value Using C/C++�
	Read or Write a Single Value Using Visual Basic�

	Reading or Writing Specific Digital Bits�
	Write a Masked Value Using C/C++�
	Write a Masked Value Using Visual Basic�

	Rapidly Transferring a Block of Digital Data�
	Read or Write a Single Buffer Using C/C++�
	Read or Write a Single Buffer Using Visual Basic�

	Using Task-Oriented Functions�
	DriverLINX's Task-Oriented Functions�
	Event Counting�
	Starting an Event Counter�
	Specifying the Rate Event for Event Counting�
	Am9513�
	KPCI-3140�

	Hardware Setup for Event Counting�
	Event Counting Using C/C++�
	Event Counting Using Visual Basic�

	Frequency Measurement�
	Starting a Frequency Counter�
	Specifying the Rate Event for Frequency Measurements�
	Am9513�
	KPCI-3140�

	Hardware Setup for Frequency Measurement�
	Frequency Measurement Using C/C++�
	Frequency Measurement Using Visual Basic�

	Interval Measurement�
	Starting an Interval Counter�
	Specifying the Rate Event for Interval Measurements�
	Am9513�

	Hardware Setup for Interval Measurements�
	Interval Measurement Using C/C++�
	Interval Measurement Using Visual Basic�

	Period and Pulse Width Measurement�
	Starting an Period or Pulse Width Measurement�
	Specifying the Rate Event for Period and Pulse Width Measurements�
	Am9513�
	KPCI-3140�

	Hardware Setup for Period and Pulse Width Measurements�
	Period or Pulse Width Measurements Using C/C++�
	Period or Pulse Width Measurement Using Visual Basic�

	Pulse and Strobe Generation�
	Starting Pulse and Strobe Generation�
	Specifying the Rate Event for Pulses and Strobes�
	AM9513�
	KPCI-3140�

	Hardware Setup for Pulses and Strobes�
	Pulse and Strobe Generation Using C/C++�
	Pulse and Strobe Generation Using Visual Basic�

	Frequency Generation�
	Starting Frequency Generation�
	Specifying the Rate Event for Frequency Generation�
	Am9513�
	KPCI-3140�

	Hardware Setup for Frequency Generation�
	Frequency Generation Using C/C++�
	Frequency Generation Using Visual Basic�

	Hardware Reference�
	8254 Operating Modes�
	Operating Mode Descriptions�
	Mode 0: Interrupt on Terminal Count�
	Mode 1:Hardware-retriggerable One-Shot�
	Mode 2: Rate Generator�
	Mode 3: Square Wave�
	Mode 4: Software-triggered Strobe�
	Mode 5: Hardware-triggered Strobe�

	KPCI-3140 Operating Modes�
	Operating Mode Descriptions�
	Mode 0: Non-retriggerable One-shot�
	Mode 1: Retriggerable One-shot�
	Mode 2: Continuous Increment�

	Am9513 Operating Modes�
	Operating Mode Descriptions�
	Mode A: Software-Triggered Strobe with No Hardware Gating�
	Mode B: Software-Triggered Strobe with Level Gating�
	Mode C: Hardware-triggered Strobe�
	Mode D: Rate Generator with No Hardware Gating�
	Mode E: Rate Generator with Level Gating�
	Mode F: Non-Retriggerable One-shot�
	Mode G: Software-Triggered, Delayed Pulse One-shot�
	Mode H: Software-Triggered, Delayed Pulse One-shot with Hardware Gating�
	Mode I: Hardware-triggered, Delayed Pulse Strobe�
	Mode J: Variable Duty Cycle Rate Generator with No Hardware Gating�
	Mode K: Variable Duty Cycle Rate Generator with Level Gating�
	Mode L: Hardware-Triggered Delayed Pulse One-shot�
	Mode N: Software-Triggered Strobe with Level Gating and Hardware Retriggering�
	Mode O: Software-Triggered Strobe with Edge Gating and Hardware Retriggering�
	Mode Q: Rate Generator with Synchronization (Event Counter with Auto-Read/Reset)�
	Mode R: Retriggerable One-shot�
	Mode S Delayed Pulse One-shot with Level-selected Reloading�
	Mode V: Frequency-shift Keying�
	Mode X: Hardware Save�

	Glossary of Terms�
	Index�

