

DriverLINX

Information in this document is subject to change without notice. The software
described is this document is furnished under a license agreement. The software may
be used or copied only in accordance with the terms of the agreement.

SCIENTIFIC SOFTWARE TOOLS, INC. SHALL NOT BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO
THE USE OF THIS PRODUCT. THIS PRODUCT IS NOT DESIGNED WITH
COMPONENTS OF A LEVEL OF RELIABILITY SUITABLE FOR USE IN LIFE
SUPPORT OR CRITICAL APPLICATIONS.

This document may not, in whole or in part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form without
prior written consent from Scientific Software Tools, Inc.

DriverLINX Counter/Timer Programming Guide
 Copyright 1997-2001, Scientific Software Tools, Inc.
All rights reserved.

SST 08-0101-1

LabOBJX, DriverLINX, and SSTNET are registered trademarks and
DriverLINX/VB is a trademark of Scientific Software Tools, Inc.
Microsoft and Windows are registered trademarks and Visual C++ and Visual Basic
are trademarks of Microsoft Corporation.
Borland is a registered trademark and Borland C++ is a trademark of Borland
International, Inc.
All Keithley product names are trademarks or registered trademarks of Keithley
Instruments, Inc.
All other brand and product names are trademarks or registered trademarks of their
respective companies.

DriverLINX Counter/Timer User’s Guide Contents • 3

Contents

Preface 7

Software License and Software Disclaimer of Warranty...7
About DriverLINX...9
About This Programming Guide..9
Conventions Used in This Manual ...11

Why Use a Counter/Timer Device Driver 13

Using Direct Hardware I/O ..13
Advantages of Device Drivers ...13

Introducing DriverLINX 15

About DriverLINX...15
DriverLINX Hardware Model..15

DriverLINX Driver ..15
Logical Devices ...15
Logical Subsystems ...16
Logical Channels ...16

DriverLINX Programming Model ...16
Logical Device Descriptors ...17
Service Requests..17
C/C++ Interface ...18
Control Interface..18

Summary..18

Counter/Timers and DriverLINX 19

Counter/Timer Hardware Description..19
Intel 8254...19
KPCI-3140 Counter/Timer Chip ...20
Am9513 ...20

DriverLINX Counter/Timer Model..21
DriverLINX Task Model ...26

Hardware Sharing ..26
Creating Tasks ...26
Monitoring and Stopping Tasks...27
DriverLINX Events ...27
DriverLINX Operations...28
DriverLINX Modes ...29
Individual and Group Tasks...29

Mapping Logical Channels to Counter/Timer Hardware Channels ...29
Digital I/O Hardware ...30
Mapping Logical Channels to Digital Hardware Channels..31

Properties of Logical Channels..31
Combining or Splitting Logical Channels ...31

4 • Contents DriverLINX Counter/Timer User’s Guide

Implementation Notes..33

Programming Counter/Timers with DriverLINX 35

DriverLINX Counter/Timer Operations...35
DriverLINX Tasks for All Subsystems..36
DriverLINX Tasks for Counter/Timer Subsystem...36
Foreground Tasks ..37
Background Tasks..37
Group Tasks...38
DriverLINX Tasks for Digital Subsystems..38

Using DriverLINX’s Service Requests ..39
Properties Common to All Service Requests ...39
Modes and Operations for Counter/Timers..40
Using Events to Control Service Requests ..41
Events for the Counter/Timer ..41
Specifying Counter/Timer Channels in a Service Request ..42
Specifying Data Buffers in a Service Request ...43

Interfacing to DriverLINX ...43
Opening and Closing a DriverLINX Device Driver...44
Selecting a DriverLINX Device Driver..46
Displaying the Edit Service Request Dialog ..47
Reporting a DriverLINX Error...48
Stopping A DriverLINX Task..49
Initializing the Device ..50
Initializing a Counter/Timer Subsystem...51
Using Messages and Events ...52

Events for Foreground Tasks ...53
Events for Background Tasks ..53

Counter Output...55
Status Polling a Counter/Timer ..56
Configuring a Counter/Timer Channel...57
Converting Between Counts and Time ..58
Using Background Tasks ...60

Using a Counter/Timer to Generate Clock Messages ..60
Storing the Counter/Timer Value at Each Interrupt ...61

Controlling Group Tasks..63
Select Channels..64
Polled Mode Groups ..65
Interrupt Mode Groups ..67

Using Digital I/O Tasks ...68
Reading or Writing a Single Digital Value ..68
Reading or Writing Specific Digital Bits ...72
Rapidly Transferring a Block of Digital Data..75

Using Task-Oriented Functions 79

DriverLINX’s Task-Oriented Functions ..79
Event Counting ..79

Starting an Event Counter..79
Specifying the Rate Event for Event Counting ..80
Hardware Setup for Event Counting..84
Event Counting Using C/C++..84
Event Counting Using Visual Basic...85

Frequency Measurement ..85
Starting a Frequency Counter ..86

DriverLINX Counter/Timer User’s Guide Contents • 5

Specifying the Rate Event for Frequency Measurements ..87
Hardware Setup for Frequency Measurement ...89
Frequency Measurement Using C/C++ ...90
Frequency Measurement Using Visual Basic ..91

Interval Measurement ..92
Starting an Interval Counter...92
Specifying the Rate Event for Interval Measurements ..93
Hardware Setup for Interval Measurements ..94
Interval Measurement Using C/C++..94
Interval Measurement Using Visual Basic ..95

Period and Pulse Width Measurement ...96
Starting an Period or Pulse Width Measurement ...96
Specifying the Rate Event for Period and Pulse Width Measurements97
Hardware Setup for Period and Pulse Width Measurements98
Period or Pulse Width Measurements Using C/C++ ...99
Period or Pulse Width Measurement Using Visual Basic..100

Pulse and Strobe Generation ..101
Starting Pulse and Strobe Generation ..101
Specifying the Rate Event for Pulses and Strobes ...102
Hardware Setup for Pulses and Strobes ...104
Pulse and Strobe Generation Using C/C++ ...105
Pulse and Strobe Generation Using Visual Basic ..106

Frequency Generation ..107
Starting Frequency Generation ..107
Specifying the Rate Event for Frequency Generation..107
Hardware Setup for Frequency Generation ...110
Frequency Generation Using C/C++ ...111
Frequency Generation Using Visual Basic ..112

Hardware Reference 113

8254 Operating Modes...113
Operating Mode Descriptions..114

KPCI-3140 Operating Modes ..116
Operating Mode Descriptions..116

Am9513 Operating Modes...117
Operating Mode Descriptions..118

Glossary of Terms 127

Index 129

DriverLINX Counter/Timer User’s Guide Preface • 7

Preface

Software License and Software Disclaimer of Warranty

This is a legal document which is an agreement between you, the Licensee, and Scientific Software Tools, Inc. By opening this
sealed diskette package, Licensee agrees to become bound by the terms of this Agreement, which include the Software License and
Software Disclaimer of Warranty.

This Agreement constitutes the complete Agreement between Licensee and Scientific Software Tools, Inc. If Licensee does not
agree to the terms of this Agreement, do not open the diskette package. Promptly return the unopened diskette package and the other
items (including written materials, binders or other containers, and hardware, if any) that are part of this product to Scientific Software
Tools, Inc. for a full refund. No refunds will be given for products that have opened disk packages or missing components.

Licensing Agreement

Copyright. The software and documentation is owned by Scientific Software Tools, Inc. and is protected by both United States
copyright laws and international treaty provisions. Scientific Software Tools, Inc. authorizes the original purchaser only (Licensee) to
either (a) make one copy of the software solely for backup or archival purposes, or (b) transfer the software to a single hard disk only.
The written materials accompanying the software may not be duplicated or copied for any reason.

Trade Secret. Licensee understands and agrees that the software is the proprietary and confidential property of Scientific Software
Tools, Inc. and a valuable trade secret. Licensee agrees to use the software only for the intended use under this License, and shall not
disclose the software or its contents to any third party.

Copy Restrictions. The Licensee may not modify or translate the program or related documentation without the prior written
consent of Scientific Software Tools, Inc. All modifications, adaptations, and merged portions of the software constitute the software
licensed to the Licensee, and the terms and conditions of this agreement apply to same. Licensee may not distribute copies, including
electronic transfer of copies, of the modified, adapted or merged software or accompanying written materials to others. Licensee agrees
not to reverse engineer, decompile or disassemble any part of the software.

Unauthorized copying of the software, including software that has been modified, merged, or included with other software, or of the
written materials is expressly forbidden. Licensee may not rent, transfer or lease the software to any third parties. Licensee agrees to
take all reasonable steps to protect Scientific Software Tools’ software from theft, disclosure or use contrary to the terms of the License.

License. Scientific Software Tools, Inc. grants the Licensee only a non-exclusive right to use the serialized copy of the software on a
single terminal connected to a single computer. The Licensee may not network the software or use it on more than one computer or
computer terminal at the same time.

Term. This License is effective until terminated. This License will terminate automatically without notice from Scientific Software
Tools, Inc. if Licensee fails to comply with any term or condition of this License. The Licensee agrees upon such termination to return or
destroy the written materials and all copies of the software. The Licensee may terminate the agreement by returning or destroying the
program and documentation and all copies thereof.

8 • Preface DriverLINX Counter/Timer User’s Guide

Limited Warranty

Scientific Software Tools, Inc. warrants that the software will perform substantially in accordance with the written materials and that
the program disk, instructional manuals and reference materials are free from defects in materials and workmanship under normal use for
90 days from the date of receipt. All express or implied warranties of the software and related materials are limited to 90 days.

Except as specifically set forth herein, the software and accompanying written materials (including instructions for use) are provided
“as is” without warranty of any kind. Further, Scientific Software Tools, Inc. does not warrant, guarantee, or make any representations
regarding the use, or the results of the use, of the software or written materials in terms of correctness, accuracy, reliability, currentness,
or otherwise. The entire risk as to the results and performance of the software is assumed by Licensee and not by Scientific Software
Tools, Inc. or its distributors, agents or employees.

EXCEPT AS SET FORTH HEREIN, THERE ARE NO OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY ACCOMPANYING HARDWARE.

Remedy. Scientific Software Tools’ entire liability and the Licensee’s exclusive remedy shall be, at Scientific Software Tools’ option,
either (a) return of the price paid or (b) repair or replacement of the software or accompanying materials. In the event of a defect in
material or workmanship, the item may be returned within the warranty period to Scientific Software Tools for a replacement without
charge, provided the licensee previously sent in the limited warranty registration card to Scientific Software Tools, Inc., or can furnish
proof of the purchase of the program. This remedy is void if failure has resulted from accident, abuse, or misapplication. Any replacement
will be warranted for the remainder of the original warranty period.

NEITHER SCIENTIFIC SOFTWARE TOOLS, INC. NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION,
PRODUCTION, SALE OR DELIVERY OF THIS PRODUCT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL,
OR INCIDENTAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF THE USE OF OR THE INABILITY TO USE SUCH PRODUCT EVEN IF
SCIENTIFIC SOFTWARE TOOLS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, OR LIMITATIONS ON DURATION OF AN IMPLIED WARRANTY, THE ABOVE LIMITATIONS MAY NOT APPLY TO
LICENSEE.

This agreement is governed by the laws of the Commonwealth of Pennsylvania.

DriverLINX Counter/Timer User’s Guide Preface • 9

About DriverLINX
Welcome to DriverLINX for Microsoft Windows, the high-performance real-
time data-acquisition device drivers for Windows application development.

DriverLINX is a language- and hardware-independent application-programming
interface designed to support hardware manufacturers’ high-speed analog, digital,
and counter/timer data-acquisition boards in Windows. DriverLINX is a multi-user
and multitasking data-acquisition resource manager providing more than 100
services for foreground and background data acquisition tasks.

Included with your DriverLINX package are the following items:

• The DriverLINX DLLs and drivers supporting your data-acquisition
hardware

• Learn DriverLINX, an interactive learning and demonstration program
for DriverLINX that includes a Digital Storage Oscilloscope

• Source code for the sample programs

• The DriverLINX Application Programming Interface files for your
compiler

• DriverLINX On-line Help System

• DriverLINX 4.0 Installation and Configuration Guide

• DriverLINX Technical Reference Manual

• Supplemental Documentation on DriverLINX and your data acquisition
hardware

About This Programming Guide
The purpose of this manual is to help you quickly learn to program DriverLINX for
counter/timer operations with your hardware.

• For help installing and configuring your hardware and DriverLINX,
please see the hardware manuals that accompanied your board and the
DriverLINX 4.0 Installation and Configuration Guide for your version
of Windows.

• For more information on the DriverLINX API, please see the on-line
DriverLINX Technical Reference Manual.

• For additional help programming your board, please examine the
source code examples on the Distribution Disks.

This manual is divided into the following chapters:

Why Use a Counter/Timer Device Driver

Brief discussion of why modern operating systems require device drivers.

Introducing DriverLINX

Presents a quick overview of DriverLINX’s hardware and programming model.

Counter/Timers and DriverLINX

Describes how DriverLINX’s hardware model supports counter/timer boards.

10 • Preface DriverLINX Counter/Timer User’s Guide

Programming Counter/Timers with DriverLINX

Explains how to program counter/timer tasks.

Using Task-Oriented Functions

Describes counter/timer functions that DriverLINX defines with a task orientation
rather than a hardware orientation.

Hardware Reference

Describes Intel 8254, KPCI-3140 and Am9513 operating modes and how they map
onto the DriverLINX programming model.

DriverLINX Counter/Timer User’s Guide Preface • 11

Conventions Used in This Manual
The following notational conventions are used in this manual:

• A round bullet identifies itemized lists (•).

• Numbered lists indicate a step-by-step procedure.

• DriverLINX Application Programming Interface and Windows macro
and function names are set in bold when mentioned in the text.

• DriverLINX indicates the exported function name of the device driver
DLL while DriverLINX indicates the product as a whole.

• DriverLINX Application Programming Interface identifiers, menu
items, and Dialog Box names are italicized when mentioned in the text.

• Italics are used for emphasis.

• Source code and data structure examples are displayed in Courier
typeface and bounded by a box with a single line.

Code

• A box with a double line bound tables of information.

Tables

 Concept • Important concepts and notes are printed in the left margin.

DriverLINX Counter/Timer User’s Guide Why Use a Counter/Timer Device Driver • 13

Why Use a Counter/Timer Device
Driver

Using Direct Hardware I/O
Most counter/timer devices are simple devices to program. For years most
application developers wrote directly to the I/O hardware using the CPU’s I/O
instructions (inp and outp) or using Peek and Poke statements in Basic. This was
simple, fast, and efficient and required a minimal learning curve.

Under Windows 3.x, C/C++ developers could use these same techniques for most
ports despite Microsoft’s strong recommendation against doing so. Visual Basic
programmers, however, found that Microsoft had removed all direct I/O statements
from the language, but they quickly discovered they could replace the missing
statements with calls to simple DLLs.

With the arrival of Windows NT, direct hardware I/O in user applications is not
physically possible. Hardware I/O in DOS and Win16 apps may appear to execute,
but the CPU never actually executes the I/O instructions. In Win32 apps hardware
I/O instructions generate a “privileged instruction exception” and terminate the
offending app.

To perform user-level I/O in Windows NT and future versions of Windows 95, the
operating system requires that applications communicate with the hardware using a
device driver. Modern device drivers are effectively trusted operating system
extensions that have more privileges than ordinary user-mode applications, DLLs,
and services.

Advantages of Device Drivers
Using device drivers to control hardware offers an application in a modern
multitasking, multithreaded operating system several advantages and one major
disadvantage. The application advantages of the device driver model are

• hardware-independent access to boards belonging to a class of devices,

• resource sharing of a single physical device among multiple
applications and/or threads,

14 • Why Use a Counter/Timer Device Driver DriverLINX Counter/Timer User’s Guide

• resource arbitration when multiple device users contend for the same
hardware resources, and

• system security either at the logical level of authorized device users or
at the physical level of preventing misuse of a device.

The main disadvantage of the device driver model is the extra overhead the system
requires to communicate device requests between the application, the device driver,
and the hardware. For device requests, such as acquiring a million data samples
in one request, the overhead is negligible, but for acquiring one sample using a
million separate requests, the time penalty is significant. For this reason,
developers must often redesign the protocols and algorithms that worked well in a
single-tasking OS, such as DOS, for use in a multitasking system, such as Windows
NT.

DriverLINX Counter/Timer User’s Guide Introducing DriverLINX • 15

Introducing DriverLINX

About DriverLINX
The DriverLINX Distribution
Disks contain many sample
programs for a variety of
hardware devices. Many
samples will not work with
counter/timer devices.

Welcome to DriverLINX for Microsoft Windows. DriverLINX is a language and
hardware-independent, high-performance, real-time, data-acquisition device driver
for 16 and 32-bit Windows 3.x, Windows 95 and Windows NT. DriverLINX
supports an abstract hardware model for generalized data-acquisition hardware that
includes analog and digital I/O as well as counter/timer functions.

This chapter briefly surveys the DriverLINX hardware and programming model. The
on-line DriverLINX Technical Reference Manual included with the DriverLINX
package is the complete, board-independent specification for the abstract
DriverLINX hardware model. Whether or not you are familiar with DriverLINX
programming, this guide will ease your learning curve by focusing on just the
counter/timer subsystem programming model.

DriverLINX Hardware Model

DriverLINX Driver
Each DriverLINX driver supports one or more models of a device series in a
manufacturer’s product line. You can control multiple products from different series
by opening several DriverLINX drivers. You can program each product using
different “Service Requests” for each overlapping data-acquisition task.

Logical Devices
A single DriverLINX driver can support multiple boards from its list of supported
models. During configuration, you assign each physical device a Logical Device
number that you use to identify a particular board to DriverLINX. At run time,
applications can determine the manufacturer, model name, I/O address, and hardware
resources of a Logical Device by consulting DriverLINX’s Logical Device
Descriptor.

16 • Introducing DriverLINX DriverLINX Counter/Timer User’s Guide

Logical Subsystems
DriverLINX treats all data-acquisition devices uniformly as abstract hardware
consisting of seven possible subsystems.

• DEVICE—the physical hardware considered as a whole.

• AI (Analog Input)—the A/D converters, multiplexers, and associated
hardware.

• AO (Analog Output)—the D/A converters and associated hardware.

• DI (Digital Input)—the digital input ports and associated hardware.

• DO (Digital Output)—the digital output ports and associated hardware.

• CT (Counter/Timer)—the counter/timer channels and associated
hardware.

DriverLINX’s Logical Device Descriptor contains properties specifying which
Logical Subsystems are available for a particular device. Counter/timer boards
always support the DEVICE and CT subsystems, and some boards support
additional subsystems, such as DI and DO.

Logical Channels
The subsystems, except DEVICE, consist of one or more data channels known as
Logical Channels. Usually a Logical Channel corresponds to one hardware channel,
but, for some boards, DriverLINX may use multiple Logical Channel numbers to
access a group of hardware channels using different data widths. DriverLINX
records the number of Logical Channels and their capabilities in the Logical Device
Descriptor.

DriverLINX Programming Model
Programming DriverLINX for data-acquisition tasks differs from the approach you
may have used previously. Most vendors’ data-acquisition packages consist of thick
documents describing hundreds of hardware-specific calls to configure and program
a data-acquisition board. DriverLINX, in contrast, uses a board-independent list of
properties to specify the parameters for a data-acquisition task.

All data-acquisition tasks in DriverLINX use the same, simple three-step protocol:

1. Decide how you want to acquire data.

2. Specify your task by setting the properties of an object or data structure
known as the Service Request.

3. Pass the Service Request to DriverLINX, which sets up the hardware
and acquires the data for you.

The power of the Service Request approach is that you use the same structure for all
data-acquisition tasks on any supported hardware. Once you understand how to
program one type of device, you can use that knowledge to program any other
supported device.

To notify an application of the progress or error conditions detected during a data-
acquisition task, DriverLINX sends the application a series of messages just as
Windows sends messages to an application’s message loop. This feature allows an

DriverLINX Counter/Timer User’s Guide Introducing DriverLINX • 17

application to overlap data processing with data acquisition and easily synchronize
the two activities.

Most data-acquisition drivers manage a hardware board exclusively for one
application. DriverLINX, however, manages the subsystems of a hardware board as
a shared resource that multiple applications or threads can share. If your hardware
board has the necessary features, DriverLINX supports running multiple,
independent tasks concurrently on one board.

Logical Device Descriptors
DriverLINX does not require
that applications reference or
use the LDD to program
data-acquisition tasks.

For writing hardware-independent applications, you may need to know the hardware
specifications of the board your program is controlling. DriverLINX makes this
information available to your program with another device-independent data
structure known as the Logical Device Descriptor (LDD). The LDD contains
information about number and types of data channels on the board, the allowed
operating modes and commands, and many other details. For more information, see
the on-line DriverLINX Technical Reference Manual.

Service Requests
The on-line DriverLINX
Technical Reference Manual
defines the DriverLINX
Specification for all data-
acquisition boards.

The most important DriverLINX concept to understand is the Service Request. This
is the object, data structure, or form that you use to specify all data-acquisition tasks.
As much as is possible, DriverLINX treats all data-acquisition tasks as similar
using the same concepts and properties to define each possible task.

Using DriverLINX for a
specific board requires
learning just the supported
properties for the board.

The key to learning how to specify a Service Request is first learning the major
groups of a Service Request, and then learning the properties for each group.

A Service Request consists of four major property groups:

• Request Group—specifies the target Logical Device and Logical
Subsystem of a task and the data-acquisition mode and operation to
perform.

• Events Group—specifies how DriverLINX should time or pace data
acquisition, when DriverLINX should start acquisition, and when it
should end.

• Select Group—specifies the Logical Channels to acquire and the
number and length of data buffers to acquire.

• Results Group—DriverLINX uses these properties to return result
codes and single data values.

You can fill out Service Requests either interactively using the Edit Service Request
Property page in DriverLINX or programmatically by assigning values to the
required properties in each group.

18 • Introducing DriverLINX DriverLINX Counter/Timer User’s Guide

C/C++ Interface
If you are using C/C++, the Service Request is a C data structure type definition.
Create an instance of the data structure, set all fields to zero, and then assign the
proper values to each needed property in the groups. After setting up the Service
Request, pass the address of the Service Request to DriverLINX for execution.
DriverLINX will report information about the task back to the application using
Windows messages.

Control Interface
If you are using the Visual Basic custom control (VBX) or ActiveX (OLE or OCX)
version of DriverLINX, the Service Request is an instance of the control object on
your form or dialog. Assign the proper values to the needed properties for your task.
Then tell DriverLINX to execute the Service Request by calling the Refresh method
for the control. DriverLINX will report information about the task back to the
application using control events.

Summary
DriverLINX provides a hardware-independent, abstract model of data-acquisition
hardware consisting of seven possible Logical Subsystems. Each Logical Subsystem
treats data-acquisition tasks as conceptually similar. Developers program data-
acquisition tasks by setting up the properties in the Request, Event, and Select
Groups of a Service Request.

The on-line DriverLINX Technical Reference Manual defines the DriverLINX
Specification for all data-acquisition boards. Using DriverLINX for a particular
board requires learning the supported properties for the hardware.

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX • 19

Counter/Timers and DriverLINX

Counter/Timer Hardware Description
Most counter/timer boards use either the Intel 8254 Programmable Interval Timer or
the AMD Am9513 System Timing Controller. The Intel 8254 is a much simpler
device than the Am9513 chip, and the 8254 has limited capabilities without external
circuitry and connections. Most vendors use the 8254 for clock generation on data-
acquisition devices, but, for stand-alone counter/timer devices, they usually use the
more complex Am9513 chip or proprietary chips as in the Keithley KPCI-3140 (and
the compatible KPCI-3100 Series).

The DriverLINX Counter/Timer programming model supports diverse hardware
using a common programming model. Although the programming model is common,
developers should understand the inherent hardware differences among counter/timer
chips if they need to write applications to support different counter/timers. The
following sections present an overview of hardware features of these chips.

Intel 8254
The Intel 8254 provides three 16-bit timing channels per chip that support six pulse
and frequency generation modes. The Intel 8254 is capable of simple event counting,
rate and square wave generation, one-shot, and strobe applications.

The following table describes the six operation modes and variations of the Intel
8254 counter/timer chip. For a detailed description of these modes, see “8254
Operating Modes” on page 113.

Mode Description

0 Event counting

1 Hardware retriggerable one-shot

2 Rate generator

3 Square wave generator

4 Software triggered strobe

5 Retriggerable hardware triggered strobe

Table 1 Designations for 8254 Counter/Timer Modes

20 • Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

Without external circuitry, however, the Intel 8254 does not support selectable clock
sources, gating control, or output polarity. The effect of the gate input on counting is
a function of the selected mode. The 8254 has no built-in frequency prescaler and
only counts in binary.

For more information, see the Intel 8254 Programmable Interval Timer data sheet
and your counter/timer hardware User’s Guide.

KPCI-3140 Counter/Timer Chip
The counter/timer chip in the Keithley KPCI-3140 and KPCI-3100 Series provides
four 16-bit timing channels per chip that support 3 pulse and frequency generation
modes. In addition, the chip has two 24-bit counters but the only counter/timer
function they can perform is to pace interrupt mode tasks.

The following table describes the three operation modes of the KPCI-3140
counter/timer chip. For a detailed description of these modes, see “KPCI-3140
Operating Modes” on page 116.

Mode Description

0 Non-retriggerable One-shot

1 Retriggerable One-shot

2 Continuous Increment

Table 2 Designations for KPCI-3140 Counter/Timer Modes

Am9513
The Am9513 provides five 16-bit timing channels per chip that support 19 pulse and
frequency generation modes. In addition, the Am9513 supports a variety of software
options to electronically interconnect counter channels and to program outputs. The
Am9513 allows software to select 16 counting sources and 5 output modes
independent of the chip’s operating mode. This chip has five built-in frequency
prescalers and can count in either binary or binary coded decimal (BCD) modes.
When using the prescalers in binary mode, each counter channel has an effective
dynamic range of 32-bits.

The following table describes the 19 operation modes of the Am9513 and AMD’s
letter designation for each mode. For a detailed description of these modes, see
“Am9513 Operating Modes” on page 117.

Mode Description

A Software triggered Strobe with no hardware gating

B Software triggered Strobe with level gating

C Hardware triggered Strobe

D Rate Generator with no hardware gating

E Rate Generator with level gating

F Non-retriggerable One-Shot

G Software triggered delayed Pulse one-shot

H Software triggered delayed Pulse one-shot with hardware gating

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX • 21

Mode Description

I Hardware triggered delayed Pulse strobe

J Variable Duty Cycle rate generator with no hardware gating

K Variable Duty Cycle rate generator with level gating

L Hardware triggered delayed Pulse one-shot

N Software triggered Strobe with level gating and hardware retriggering

O Software triggered Strobe with edge gating and hardware retriggering

Q Rate Generator with synchronization

R Retriggerable One-Shot

S Delayed Pulse one-shot with level-selected reloading

V Frequency-Shift Keying

X Rate Generator with edge gating

Table 3 Letter Designations for Am9513 Counter/Timer Modes

Each Am9513 chip occupies 2 consecutive I/O addresses. The first location
addresses a control port and the second a data port.

The Am9513 can be a complex chip to learn, program, and use because of its rich
feature set. For detailed hardware information, consult Advanced Micro Devices’
Am9513A/Am9513 System Timing Controller Technical Manual and your
counter/timer hardware user’s guide.

DriverLINX Counter/Timer Model

Figure 1 DriverLINX Counter/Timer Model

DriverLINX abstracts all counter/timer hardware chips as an array of three terminal
devices. The terminals of an individual counter/timer are

• Clock—the source input for dividing down to a lower frequency or for
counting external events.

• Gate—the control input for triggering, re-triggering, or gating the
counter/timer operation.

• Output—the counter/timer output frequency, pulse, or strobe.

DriverLINX associates with each counter/timer channel four operating properties.
The properties are

• Mode—defines the operational task for the counter/timer channel.

• Period—defines the cycle period or divisor for the counter/timer
channel.

22 • Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

• OnCount—defines high duration of the period for asymmetrical output
trains or pulses.

• Pulses—defines the number of periods to generate.

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX • 23

Capabilities of DriverLINX’s
counter/timer subsystem
depend on the hardware
features of your board.

By selecting values for these seven properties and, where necessary, making the
appropriate connections between counters, applications can program DriverLINX to
execute one of the counter/timer’s basic operating modes or the following
counter/timer operations and tasks:

• Event counting—16-, 32-, and 64-bit counters for signals at the Clock
input.

• Frequency measurement—16- and 32-bit frequency measurement.

• Interval measurement—Measure time between two consecutive
pulses at a single input or two pulses at separate inputs.

• Period and pulse width measurement—Measure duration of each
cycle or half cycle.

• Pulse generation—Generate a variety of one-shot pulses and strobes.

• Frequency generation—Generate periodic pulse trains, variable duty
cycle waveforms, square waves, or input-modulated waveforms.

Applications may program and operate counter/timers independently, or they may
configure the operating mode for several counter/timers and start or stop them
synchronously. For hardware boards that support interrupts, applications may
program a list of timers whose current value DriverLINX will read into a buffer on
each interrupt.

The following tables show the legal values for the Clock, Gate, Output, and Mode
fields of a DriverLINX logical counter channel. Note that the capabilities of the Intel
8254 are a subset of the Am9513’s capabilities.

Clocks
The Clock property specifies the source input for the abstract counter/timer of a
Logical Channel.

Clock Description Intel 8254 KPCI-3140 Am9513

Internal1..
Internal5

Internal clock frequency
prescaled at 1 of 5 taps

yes
(Internal1
only)

yes (Internal1
only)

yes

Source1..
Source5

Use channel 1..5 source
(clock) input

no no yes

Gate1..
Gate5

Use channel 1..5 gate input no no yes

External External clock frequency
(usually positive edge)

yes yes yes

ExternalPE External clock frequency
(positive edge clocking)

yes yes yes

ExternalNE External clock frequency
(negative edge clocking)

no yes yes

TCNm1 Use channel N-1 terminal
count output

no yes yes

Table 4 Allowed Values for Rate Event Clock Property

24 • Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

• For the Am9513-based counter/timers, you may also request that the
clock input use the negative-going edge of the clock input rather than
the positive edge.

• Internal1 always designates the onboard hardware clock.
Internal2..Internal5 designate lower frequency taps of the master clock
if the hardware supports this capability.

• If the application uses an Internal1 clock with a Period value greater
than the hardware counter/timer supports, DriverLINX will
automatically select available hardware prescalers to obtain the closest
value to the requested Period.

Gates
The Gate property selects how the abstract counter/timer uses the gate input of a
Logical Channel. Generally, this input gates the counting or measuring process or
triggers the counter/timer operation.

Gate Description Intel 8254 KPCI-3140 Am9513

Enabled Enable gate yes yes yes

Disabled Enable gate no* yes yes

NoConnect No connection modes 0,2-4 yes yes

LoLevel
GateN

Logic low level at gate input
N

no mode 2 yes

LoEdge
GateN

Negative edge at gate input
N

no modes 0,1 yes

HiLevel
GateN

Logic high level at gate
input N

modes 0,2-4 mode 2 yes

HiLevel
GateNp1

Logic high level at gate
input N+1

no no yes

HiLevel
GateNm1

Logic high level at gate
input N-1

no no yes

HiTcNm1 Positive edge at terminal
count output N-1

no no yes

HiEdge
GateN

Positive edge at gate input N modes 1,5 modes 0,1 yes

Table 5Allowed Values for Rate Event Gate Property

*Some boards provide off-chip hardware that can disable the 8254’s gate.

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX • 25

Outputs
The Output property programs the polarity and duty cycle of the abstract
counter/timer’s output port.

Output Description Intel 8254 KPCI-3140 Am9513

Default Depends on operation (see
“Counter Output” on page
55)

yes yes yes

LoToggled Start low; toggle at TC yes yes yes

LoActive Active low pulse at TC yes yes yes

LoZ Inactive low impedance
output

no no yes

Toggled Toggle at TC yes no yes

HiToggled Start high; toggle at TC yes yes yes

HiActive Active high pulse at TC no yes yes

HiZ Inactive high impedance
output

no no yes

Table 6 Allowed Values for Rate Event Output Property

DriverLINX automatically selects an output type if the application requests Default.
Depending on hardware capabilities, DriverLINX chooses the output option based on
the requested Mode. The Intel 8254 allows only one output mode, which depends on
the operation.

Modes
The Mode property selects the type of rate generator or task the abstract
counter/timer will perform. Mode values fall into two general groups—pulse and
waveform generators and measurement tasks. Note that the generator modes (e.g.,
RateGen, SqWave, etc.) program a single Logical Channel of an abstract
counter/timer while the measurement modes (e.g., Frequency, Interval, etc.) may
program multiple Logical Channels.

Generator Description Intel 8254 KPCI-3140 Am9513

RateGen Periodic rate generator yes yes yes

SqWave Square wave generator yes yes yes

VDCGen Variable duty cycle rate
generator

yes yes yes

BurstGen Burst rate generator no no no

Divider Frequency divider no yes yes

Freq Frequency counter yes yes yes

Interval Interval timer yes no yes

Count Event counter yes yes yes

PulseWd Pulse width measurement yes yes yes

SplitClk Split frequency rate
generator

no no no

26 • Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

Generator Description Intel 8254 KPCI-3140 Am9513

FskGen Frequency-shift keying no no yes

PulseGen Pulse generator no yes yes

Retrig
RateGen

Retriggerable rate generator no no yes

Retrig
SqWave

Retriggerable square wave
generator

no no yes

Count32 32-bit event counter no yes yes

Count64 64-bit event counter no yes yes

Freq32 32-bit frequency counter no yes yes

FreqRatio Frequency ratio counter no no no

OneShot One-shot pulse or strobe yes yes yes

Retrig
OneShot

Retriggerable one-shot pulse
or strobe

yes no yes

Table 7 Allowed Values for Rate Event Mode Property

• Some of the above mode field options, e.g., BurstGen, specify features
that require external connections, which some vendors have prewired
into their products.

• Other options, such as frequency measurement modes, require external
user connections between counter/timer terminals.

DriverLINX Task Model
To manage a user application’s data-acquisition requests, DriverLINX creates tasks.
A DriverLINX task consists of the set of hardware and system resources and the
board-specific protocols required to execute the data-acquisition request.
Applications can start tasks, monitor tasks, and stop tasks by submitting Service
Requests to DriverLINX.

Hardware Sharing
DriverLINX allows multiple applications to share a data-acquisition device or allows
multiple tasks to run on a device if the hardware can support concurrent operations.
To support hardware sharing and concurrency, DriverLINX assigns resources to each
task and then compares the resource requirements of a new task with the in-use
resources of all current tasks. If the new requirements do not conflict with the current
in-use resources, DriverLINX updates the in-use resources and starts the task.
Otherwise, DriverLINX rejects the newly requested task.

Creating Tasks
User applications create data-acquisition tasks by setting the properties of a Service
Request to values that specify the task. Then the application submits the Service
Request to DriverLINX, which transforms each Service Request into a procedure for
performing the task on the requested hardware subsystem. To execute a new task,
DriverLINX performs the following steps for each Service Request:

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX • 27

1. Audit the Service Request fields to determine if the hardware can
perform the task.

2. Request necessary hardware and system resources to perform task.

3. Convert the Service Request into the hardware parameters and
protocols to perform the task.

4. Execute the task on the hardware.

5. Notify application of any requested task events as they occur.

6. Wait for the task to complete.

7. Release requested hardware and system resource used by the task.

If DriverLINX detects any errors in the Service Request or in the hardware during
the task, it aborts the task and returns an error code to the application. If the
application requests hardware resources that are already in use by another thread or
process, DriverLINX also stops the task and notifies the application.

Monitoring and Stopping Tasks
A Start operation fills in the
taskId property. DriverLINX
uses the taskId to determine
to which task a Status or Stop
operation applies.

Applications may also check the status of a task or terminate a task by modifying the
operation property of the Service Request used to create the task and resubmitting it
to DriverLINX. To check status, change the operation property to “status”. To
terminate a task, change the operation property to “stop”.

DriverLINX Events
Applications can request that DriverLINX notify the application of significant events
during execution of a task. By designing a data-acquisition task to use events, an
application can overlap data processing with data collection. Events allow the
application to coordinate these two activities without the overhead associated with
polling for the status of the data collection task and without the scheduling problem
of coordinating data processing with partial data collection.

DriverLINX posts events to an application through the Windows messaging
mechanism. DriverLINX supports the following messages:

Message Description Posted

ServiceStart Task is starting Default. Can disable.

ServiceDone Task is complete Default. Can disable.

BufferFilled Buffer processing complete Can enable.

DataLost Data over/underrun Always reported.

TimerTic Timer interrupt occurred Non-buffered CT task.

StartEvent Start event detected Can enable.

StopEvent Stop event detected Can enable.

CriticalError Hardware error Always reported.

Table 8 DriverLINX Messages

28 • Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

The most useful events for applications are ServiceDone, BufferFilled, and DataLost.

• The ServiceDone event notifies the application that DriverLINX
terminated the task. Tasks may end because the application stopped it,
the stop event condition in a Service Request was satisfied, or
DriverLINX detected a run-time error and stopped the task.

• The BufferFilled event notifies the application that DriverLINX has
read or written the current buffer. Applications can use this message
with multiple data buffers to eliminate polling the driver for the status
of the task and to overlap data processing with data acquisition.

• The DataLost event notifies the application that DriverLINX detected
that the hardware was filling or emptying buffers faster than the
application or driver could process the buffers.

The other DriverLINX events are useful for special cases.

• The ServiceStart event notifies the application that DriverLINX is
starting the task. An application might use this event to provide visual
feedback to the user interface that the task is starting.

• The TimerTic event notifies the application that DriverLINX has
processed a clock interrupt. DriverLINX only reports this event for the
counter/timer subsystem when the task is not using data buffers.

• The StartEvent notifies the application that DriverLINX detected that
the logical condition the application specified in the Service Request’s
Start Event is true. DriverLINX can only report this event if the
hardware generates an interrupt associated with the Start Event.

• The StopEvent notifies the application that DriverLINX detected that
the logical condition the application specified in the Service Request’s
Stop Event is true. DriverLINX can only report this event if the
hardware generates an interrupt associated with the Stop Event.

• The CriticalError event notifies the application that DriverLINX
detected an unexpected critical error other than DataLost. This usually
indicates either the hardware or software is malfunctioning and needs
repair or re-configuration.

DriverLINX Operations
For most counter/timer hardware, applications can select one of five operations for a
task. The basic counter/timer task operations are

• Initialize—resets the counter/timer subsystem software and/or
hardware.

• Configure—set up a counter/timer for a task, but do not start the task.

• Start—set up and arm a counter/timer for a task. The Gate, Clock, and
Mode properties determine when the hardware starts counting.

• Status—return the current counter/timer count value and status to the
application.

• Stop—disarm the counter/timer task and make the task resources
available for new tasks.

The Initialize, Configure, and Start operations all create a DriverLINX task. The task
that DriverLINX creates for the first two operations exists only briefly during the

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX • 29

application’s function call to DriverLINX. For a Start operation, however,
DriverLINX creates a task that may exist indefinitely until the application explicitly
ends the task with a Stop operation or DriverLINX ends the task because the Stop
Event has become true.

DriverLINX Modes
For most counter/timer hardware, DriverLINX supports three task modes, OTHER,
POLLED and INTERRUPT.

• When an application uses OTHER mode, DriverLINX initializes the
subsystem or configures a Logical Channel without starting the
counter.

• When an application uses POLLED mode, DriverLINX starts the
counter/timer hardware running, but it does not automatically report
any status information about the task to the application.

• When an application uses INTERRUPT mode, DriverLINX starts the
counter/timer hardware running with a hardware interrupt enabled. At
each interrupt, DriverLINX either sends a TimerTic event to the
application or saves the current count of the requested counter/timers
into a data buffer.

For other subsystems, polled
mode tasks start and stop
before DriverLINX returns
control to the application.

When using polled mode counter/timer operations, DriverLINX returns control to
the application after starting the counter/timer hardware. Applications must use the
Status operation to read the current count value of a counter/timer. The counter/timer
task will run until the application ends it with a Stop operation.

When using interrupt mode counter/timer operations, DriverLINX also returns
control to the application after starting the counter/timer hardware. However, if the
application specified data buffers in the Service Request, DriverLINX will
automatically read and store the current counter value(s) into the buffer. The
application may request that DriverLINX read the next Logical Channel in the
Channel list at each interrupt or that DriverLINX read all Logical Channels at each
interrupt. If the application is not using buffers, then DriverLINX sends a TimerTic
event to the application at each interrupt.

Individual and Group Tasks
Applications can control individual counter/timer channels as separate tasks or they
can synchronize the starting and stopping of multiple channels. To collect multiple
channels into a group, the application first performs Configure operations on each
channel in the group to set up the hardware. Then the application can start the
channels in the group by executing a Service Request with a Start operation that lists
the group’s channels in the Service Request’s channel list. By using a Stop operation
instead, the application can simultaneously stop all channels in the group. For more
information, see “Group Tasks” on page 38.

Mapping Logical Channels to Counter/Timer Hardware
Channels

DriverLINX maps the hardware’s counter/timer channels to consecutive Logical
Channels. The following table shows the correspondence between the hardware
channels and Logical Channels. Note that DriverLINX always uses zero-based

30 • Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

numbering for Logical Channels while vendors often use one-based channel
numbering.

Logical
Channel

0 1 2 3 4 5 6 7 8 9

CTM-05 1 2 3 4 5

CTM-05A 1 2 3 4 5

CTM-10 1A 2A 3A 4A 5A 1B 2B 3B 4B 5B

Table 9 Map of Logical Channels to Counter/Timer Hardware Channels

For other models, see the appropriate Using DriverLINX with your Hardware
manual.

Digital I/O Hardware
Software cannot read or
control the strobe lines for
digital inputs without external
connections.

The MetraByte counter/timer boards support one or more digital I/O ports. The
CTM-05/A board has one 8-bit digital input port with latch and one 8-bit digital
output port with latch. The CTM-10 board has two 8-bit digital input ports with
latches and two 8-bit digital output ports with latches. A strobe line input at each
input port controls whether the input data passes through the latch or is held by the
latch. There is no software control over this strobe line. For more information, see
the CTM-10 and CTM-05/A User’s Guide.

These digital ports are physically independent of the counter/timers and do not have
any internal connections to the counter/timers. Also, the digital I/O ports do not
generate any hardware interrupts. Applications can read or write the digital ports
independently of the counter/timers. DriverLINX does support reading a digital input
port at each counter/timer interrupt to start or stop a counter/timer task.

The CTM Series boards also have a digital input line that generates a hardware
interrupt. DriverLINX models this line as a special-purpose, 1-bit digital input
channel. Associated with the interrupt input line is another external input line that
enables or disables the interrupt input line. DriverLINX has no direct hardware
control over this gating line.

For other models, see the appropriate Using DriverLINX with your Hardware
manual for details on digital I/O features.

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX • 31

Mapping Logical Channels to Digital Hardware Channels
DriverLINX maps the hardware’s digital channels to consecutive Logical Channels.
The following table shows the correspondence between the hardware channels and
Logical Channels. Note that DriverLINX always uses zero-based numbering for
Logical Channels while vendors often use one-based channel numbering.

Logical
Channel

0 1 2

CTM-05 Port A I/O external interrupt

CTM-05A Port A I/O external interrupt

CTM-10 Port A I/O Port B I/O external interrupt

Table 10 Map of Logical Channels to Digital Hardware Channels

To support writing hardware-independent applications, DriverLINX assigns special
fixed Logical Channel numbers as aliases for the Logical Channel of an external
interrupt line.

For other models, see the appropriate Using DriverLINX with your Hardware
manual for details on digital I/O features.

Properties of Logical Channels
The hardware design of the digital channels on the CTM Series does not support
reading back the last value written to a digital output port. Writing Logical Channel 0
outputs data to a physically different latch than when an application reads Logical
Channel 0. If needed, applications must maintain their own shadow copies of the
values written to a digital output port.

Applications that want to share an output port with another thread or process can do
so without knowing the current output value of the port. Use either bit-level I/O (see
“Reading or Writing Specific Digital Bits” on page 72) or extended Logical Channel
addressing (see “Combining or Splitting Logical Channels” on page 31).

Combining or Splitting Logical Channels
DriverLINX also supports bit-
level I/O using masks. See
“Reading or Writing Specific
Digital Bits” on page 72.

DriverLINX supports a software extension to Logical Channel addressing that
allows applications to combine adjacent Logical Channels into a single channel or
split a Logical Channel into smaller addressable parts. For instance, applications can
address individual bits on the digital I/O board or read and write multiple channels
with a single operation.

To use the Logical Channel addressing extensions, form a 16-bit Logical Channel
address by combining the channel number of an addressable unit with a size field as
follows:

32 • Counter/Timers and DriverLINX DriverLINX Counter/Timer User’s Guide

 Always 0 Size Channel

Bits 15 14..12 11..0

Range 0..1 0..7 0..4095

Table 11 Field Layout of an Extended Logical Channel Address

The following table specifies the 3-bit size codes:

Size Code Unit Bits

0 native varies with hardware

1 bit 1

2 half nibble 2

3 nibble 4

4 byte 8

5* word 16

6* dword 32

7* qword 64

Table 12 Size Codes for Extended Logical Channel Address

* Neither the CTM-05/A nor CTM-10 support 32- or 64-bit digital I/O, and the
CTM-05/A does not support 16-bit digital I/O.

“Native” units refer to the hardware-defined digital channel size. For most boards,
this is the same as an 8-bit byte. When using extended Logical Channel addressing,
DriverLINX groups digital bits in units defined by the size code and then assigns
consecutive channel numbers starting from zero. For instance, a CTM-10 with two 8-
bit ports would have the following channel addresses for each size code:

Unit Channels Address (dec) Address (hex)

native 0..1 0..1 0..1

bit 0..15 4096..4111 1000..100F

half nibble 0..3 8192..8195 2000..2003

nibble 0..2 12288..12290 3000..3002

byte 0..1 16384..16385 4000..4001

word 0 20480 5000

DriverLINX Counter/Timer User’s Guide Counter/Timers and DriverLINX • 33

Implementation Notes
• For extended Logical Channel addressing of unit sizes less than the

native size, DriverLINX only supports single-value transfers.

• For block I/O transfers, DriverLINX only allows Logical Channel
addressing at unit sizes equal or larger than the native size. Note that
extended Logical Channels may not map to consecutive physical
channels. Because DriverLINX uses the CPU’s block I/O instructions
for polled, block I/O transfers, some bytes will not represent I/O ports.

• When using size codes larger than the native addressing unit, you may
not be able to address all hardware ports if the number of available
digital I/O lines is not an integral multiple of the size unit.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 35

Programming Counter/Timers
with DriverLINX

DriverLINX Counter/Timer Operations
The DriverLINX API is
available as a C/C++, VBX,
or ActiveX interface. See
“Interfacing to DriverLINX”
on page 43.

This chapter describes how to control your counter/timer board using the
DriverLINX API for the most common tasks. Each section presents background
information and concepts for performing a particular task and then presents
DriverLINX procedures in C/C++ and Visual Basic for a task. Users of other
programming languages should use the ActiveX control interface for DriverLINX
and look at the Visual Basic examples for how to program tasks.

The DriverLINX counter/timer model provides over 12,000 potential configurations
for each counter/timer channel. If you allow for interconnecting counter/timer
channels, the number of potential combinations is staggering. Naturally, real
hardware only supports a subset of possible configurations. To keep things
manageable, follow these simple steps:

1. Decide the basic task category you need—event counting, frequency
measurement, interval measurement, period and pulse width
measurement, pulse and strobe generation, frequency generation.

2. Go to the section of this guide that describes using a counter/timer for
your task.

3. Decide if you need a repetitive or non-repetitive measurement or
waveform generation.

4. Decide if you need triggering (rising or falling edge) or gating (active
high or low levels).

5. Look at the Rate Event Properties tables for your task to determine if
DriverLINX supports your requirements.

6. Look at “Counter Output” on page 55 to set up the counter/timer
output.

If the Rate Event Properties tables do not show an entry for your requirements, then
you may need additional external hardware and/or multiple counter/timer channels to
support your task. Look at “Hardware Reference” on page 113 Operating Modes to
see if any of the basic hardware modes, alone or in combination, will meet your
requirements. If so, look for the corresponding mode in one of the Rate Event
Properties tables and configure each counter/timer channel as shown. If you do not

36 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

find what you are seeking, then you will need to design some external hardware for
your application.

DriverLINX Tasks for All Subsystems
The following DriverLINX tasks are common for all subsystems and all supported
hardware boards:

• Connecting to a driver—DriverLINX requires applications to open,
select, and close drivers for specific boards. See “Opening and Closing
a DriverLINX Device Driver” on page 44.

• Selecting a driver—DriverLINX allows your application to control
multiple different types of hardware boards. See “Selecting a
DriverLINX Device Driver” on page 46.

• Edit a Service Request—DriverLINX allows your application to
display the Edit Service Request property page to quickly test or modify
Service Requests during application development. See “Displaying the
Edit Service Request Dialog” on page 47.

• Error reporting—Applications can use DriverLINX to display
DriverLINX errors in message boxes. See “Reporting a DriverLINX
Error” on page 48.

• Stopping a task—Applications can use a Service Request to stop a
DriverLINX task. See “Stopping A DriverLINX Task” on page 49.

• Device initialization—DriverLINX requires your application to
initialize all subsystems on a board before performing any other tasks.
See “Initializing the Device” on page 50.

• Subsystem initialization—Applications can initialize a single,
specified subsystem. See “Initializing a Counter/Timer Subsystem” on
page 51.

• Using DriverLINX messages and events—DriverLINX reports task
information to your application using the Windows messages or events.
See “Using Messages and Events” on page 52.

DriverLINX Tasks for Counter/Timer Subsystem
The following DriverLINX tasks are specific to the counter/timer subsystem:

• Counter output—DriverLINX defines default output signals for
counter/timer channels as well as application-defined outputs. See
“Counter Output” on page 55.

• Status polling—Applications can use a Service Request to monitor the
current value and status of a counter/timer. See “Status Polling a
Counter/Timer” on page 56.

• Configuring a counter/timer—Applications can configure and arm a
counter/timer without actually starting the counter. See “Configuring a
Counter/Timer Channel” on page 57.

• Converting between counts and time—DriverLINX supports
methods to convert between counter tics and time. See “Converting
Between Counts and Time” on page 58.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 37

The following task-oriented functions, although specific to the counter/timer
subsystem, are defined to be portable across data-acquisition boards:

• Event counting—DriverLINX supports counting external events using
16-, 32-, or 64-bit counters. See “Using Task-Oriented Functions” on
page 79.

• Frequency measurement—DriverLINX supports counting events for
a known time period. See “Frequency Measurement” on page 85.

• Interval measurement—DriverLINX can measure the interval
between two pulses on a single input line or on two separate input lines.
See “Interval Measurement” on page 92.

• Period and pulse width measurement—DriverLINX can measure the
duration or period of a single cycle of an input or the duration of the
positive or negative half cycle of an input. See “Period and Pulse Width
Measurement” on page 96.

• Pulse and strobe generation—DriverLINX can generate a variety of
single, delayed pulses and strobes. See “Pulse and Strobe Generation”
on page 101.

• Frequency generation—DriverLINX can generate a variety of pulse
trains, variable duty cycle waveforms, square waves, and frequency-
shift keyed waveforms. See “Frequency Generation” on page 107.

Foreground Tasks
The simplest technique for your application to control counter/timers with
DriverLINX is to use a foreground task. Your application starts a counter/timer using
a DriverLINX Service Request with the Mode property set to “Polled” and the
Operation property set to “Start”. DriverLINX will configure, arm, and start a
counter/timer task.

If your application needs to monitor the current count of the counter/timer, it should
poll the counter/timer’s status. See “Status Polling a Counter/Timer” on page 56.
DriverLINX will return to your application the current count value with each Service
Request. See “Converting Between Counts and Time” on page 58 for how to convert
a count to seconds.

When your application wants to end the current task or reprogram the counter/timer
with a new task, it must first stop the current task. See “Stopping A DriverLINX
Task” on page 49.

If your application needs to first configure several counter/timer channels and then
start them simultaneously, see “Group Tasks” on page 38.

Background Tasks
DriverLINX can also run counter/timer tasks in the background asynchronously
collecting data while the application processes other data in the foreground.
DriverLINX can support asynchronous mode only if

• the counter/timer board supports interrupts, and

• you have configured the board to use an available interrupt.

38 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Background, interrupt-driven tasks can either report an event to the application at
each interrupt or they can use a data buffer to collect samples at each interrupt.

• Unbuffered background counting—DriverLINX posts a “timer tic”
event to the application at each interrupt. See “Using a Counter/Timer
to Generate Clock Messages” on page 60.

• Buffered background counting—DriverLINX stores the current
counter value into a memory buffer at each interrupt. See “Storing the
Counter/Timer Value at Each Interrupt” on page 61.

Group Tasks
The preceding tasks allow you to program an independent task on each counter/timer
channel. You can also configure multiple counter/timer channels and then
simultaneously start or stop them as a group.

• Configuring channels for a group—DriverLINX allows the
application to configure, but not start, a Logical Channel so that the
application can later start several channels simultaneously. See
“Controlling Group Tasks” on page 63.

• Polled mode groups—DriverLINX can start or stop a non-interrupt
task that controls multiple counter/timer channels. The application can
read the individual counter values by status polling. See “Polled Mode
Groups” on page 65.

• Interrupt mode groups—DriverLINX can start or stop an interrupt-
driven task that controls multiple counter/timer channels. If the
application specifies data buffers, DriverLINX reads the counter values
into the buffer at each interrupt. Otherwise, DriverLINX reports a
“timer tic” event to the application at each interrupt. See “Interrupt
Mode Groups” on page 67.

These examples illustrate the most common counter/timer tasks that most
applications need. You can also create special-purpose counter/timer services by
programming individual counter/timers with any of the hardware-supported modes.
See “Hardware Reference” on page 113 Operating Modes for more information.

DriverLINX Tasks for Digital Subsystems
For the CTM Series, DriverLINX also supports the following digital I/O operations:

• Single value I/O—DriverLINX synchronously reads or writes a single
value to an I/O port. See “Reading or Writing a Single Digital Value”
on page 68.

• Masked, single value I/O—DriverLINX synchronously reads or writes
only the selected bits of an I/O port. See “Reading or Writing Specific
Digital Bits” on page 72.

• Block transfer on an I/O port—DriverLINX synchronously transfers
a block of data to or from an I/O port. See “Rapidly Transferring a
Block of Digital Data” on page 75.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 39

Using DriverLINX’s Service Requests
All counter/timer operations use the Service Request to pass your task specification
to DriverLINX. If you are using C/C++, the Service Request is a data structure
defined in the include file, “drvlinx.h”. If you are using the ActiveX (OCX) control
to program DriverLINX, the Service Request is an instance of the control object with
member properties that you set up.

The Edit Service Request
property page is a visual
representation of the Service
Request object that your
application programs.

Whatever language you are using, the principles of setting up a Service Request are
the same, although the syntax varies slightly with each language. This manual will
use the Service Request terminology displayed in the Edit Service Request property
page. See the example programs or the on-line DriverLINX Technical Reference
Manual for the language-specific syntax. See “Displaying the Edit Service Request
Dialog” on page 47 for how to pop-up the Edit Service Request dialog in your
applications.

Properties Common to All Service Requests
All Service Requests require that the application define the following properties in
the Request Group:

• Device—specifies the Logical Device number of a configured device as
the target of this Service Request.

• Subsystem—specifies the primary Logical Subsystem that is the target
of this Service Request.

• Mode—suggests the hardware technique (Other, Polled, Interrupt,
DMA) that DriverLINX should use for this Service Request.
DriverLINX may select another mode to execute the task.

• Operation—specifies the primary command to execute for this Service
Request.

The additional Service Request groups and properties depend on the selected
subsystem, operation, and task your application intends to perform. See
“DriverLINX Counter/Timer Operations” on page 35.

40 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Modes and Operations for Counter/Timers
DriverLINX’s counter/timers use only the following modes:

• Other—used to initialize the counter/timer subsystem or configure a
Logical Channel without starting counting.

• Polled—specifies that applications issue software commands to
DriverLINX to start, monitor, and stop counters.

• Interrupt—specifies that DriverLINX performs counting operations at
each external interrupt.

For each Mode using the counter/timer subsystem, DriverLINX supports the
following operations:

Mode Operation Description

Other Initialize Initialize counter/timer subsystem

 Configure Initialize a Logical Channel without starting counting

Polled Start Set up and start a counter/timer task

 Status Return status and current value of a counter/timer

 Stop Stop a counter/timer task

Interrupt Start Set up and start a background counter/timer task

 Status Return status and position of next buffer sample to process

 Stop Stop a background counter/timer task

Table 13 Allowed DriverLINX Counter/Timer Operations by Mode

Other Mode
DriverLINX executes Other Mode tasks synchronously, i.e., the task starts, executes,
and finishes before DriverLINX returns control back to the calling application.

Polled Mode

For subsystems other than the
counter/timer, DriverLINX
executes Polled Mode tasks
synchronously.

For the counter/timer subsystem, DriverLINX uses a quasi-synchronous technique.
For Start operations, DriverLINX initializes and starts the task before returning
control to the application. Applications then call DriverLINX to monitor the status of
the task or to stop the task. DriverLINX does not automatically stop polled tasks
unless DriverLINX detects an error while executing an application-issued command.

Interrupt Mode
DriverLINX executes Interrupt Mode tasks asynchronously, i.e., DriverLINX
initializes the task and then returns control to the application. At each interrupt,
DriverLINX briefly regains control from the application and either starts the task,
collects task data, reports status to the application, or stops the task.

The application specifies the work DriverLINX performs at each interrupt by the
properties in the Service Request. DriverLINX reports task status to the application

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 41

using either the Windows messaging system or control events. See “DriverLINX
Events” on page 27.

Using Events to Control Service Requests
A few Service Request
operations do not use events.

DriverLINX uses the concept of an “event” to logically control the processing of a
Service Request task. For all tasks, DriverLINX requires your application to specify
an event for the three events in the Events Group.

• Timing—specifies the timing, or pacing, clock DriverLINX uses
during processing a Service Request task.

• Start—specifies when DriverLINX starts counting or acquiring data
for this Service Request task.

• Stop—specifies when DriverLINX stops counting or acquiring data for
this Service Request task.

The example Service Request above defines a synchronous (polled) start of a
counter/timer channel. The application specifies the Logical Channel and
configuration for the counter/timer channel in the Rate Event properties (not shown
in the above dialog).

The on-line DriverLINX Technical Reference Manual defines an extensive set of
possible events for a wide variety of hardware and data-acquisition protocols. A
DriverLINX driver for counter/timers, however, uses only a few events that this
guide describes.

See the on-line DriverLINX
Technical Reference Manual
for more information about
the Logical Device
Descriptor.

DriverLINX defines events as hardware and vendor independent and allows
applications to use each event as a timing, start, or stop event whenever logical.
Some hardware boards, however, do not support events that are common to the
majority of similar products, or they support only a subset of the event’s parameters.
To allow applications to handle hardware-dependent features, DriverLINX publishes
board-specific information in the Logical Device Descriptor. Applications that need
hardware independence should query the Logical Device Descriptor to determine the
available features of a board.

Events for the Counter/Timer
DriverLINX’s counter/timer operations use only the following events:

• None—indicates that the task does not require this event.

• Command—indicates that the Service Request starts or stops on
software command.

42 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

• Terminal Count—indicates that the Service Request completes when
the hardware has transferred all samples into or out of the data buffers.

• Digital—when used as a start or stop event, specifies a digital input
channel to read and a masked set of bits to compare to a pattern. See
“Using Digital Start and Stop Events” on page 63. When used as a
timing event, specifies the external interrupt input line on the hardware,
which DriverLINX uses as a “clock” to pace the Service Request task.
See “Using the External Interrupt Input Line” on page 62.

• Rate—specifies the operating parameters for a Logical Channel of the
counter/timer subsystem.

The following table defines the events DriverLINX supports for each Mode on the
counter/timer subsystem.

Mode Timing Start Stop

Other Rate None None

Polled None
Rate

None
Command

None
Command

Interrupt Rate
Digital

None
Command
Digital

None
Command
Digital
Terminal Count

Table 14 Allowed DriverLINX Counter/Timer Events by Mode

Specifying Counter/Timer Channels in a Service
Request
For most counter/timer Service Request operations, you specify the Logical Channel
for the operation in the Channel property of a Rate Event. For group operations on
multiple Logical Channels, you specify the members of the group using the Select
Channels properties of a Service Request. Depending on the task and operation, your
application can specify a single Logical Channel, a consecutive range of Logical
Channels (Start/Stop), or a random list of Logical Channels.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 43

In a preemptive multitasking
system, the delay between
each instruction can vary
significantly and
unpredictably.

For channels in a group, DriverLINX uses a single hardware operation to start or
stop members of the group. Note, however, that your application can specify Logical
Channels in a group that map to two different hardware chips on the CTM-10. In this
case, DriverLINX must use two separate instructions to control each chip.

Specifying Data Buffers in a Service Request
DriverLINX can transfer multiple samples in one Service Request by using data
buffers.

• For group counter/timer requests that do not use interrupts, applications
can specify one buffer with a length equal to the number of Logical
Channels in the group. See “Polled Mode Groups” on page 65.

• For group counter/timer requests using external interrupts, applications
can specify multiple Logical Channels and up to 255 fixed-length
buffers of arbitrary size. See “Interrupt Mode Groups” on page 67.

• For untimed digital I/O transfers DriverLINX will use fast CPU block
I/O instructions. Applications can specify one Logical Channel and one
buffer as long as 128 KB. See “Rapidly Transferring a Block of Digital
Data” on page 75.

To transfer only a single value in a Service Request, see “Reading or Writing a
Single Digital Value” on page 68.

Interfacing to DriverLINX
To use DriverLINX, applications must incorporate the DriverLINX API into their
code. Applications can then control multiple DriverLINX drivers and multiple
Logical Devices using DriverLINX’s API.

The DriverLINX API supports multiple languages for Win32 application
development. Currently DriverLINX supports two different language interfaces. The
header files to support these languages are all in the DLAPI subdirectory where you
installed DriverLINX.

44 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

• C/C++—a data structure and function call API available for 32-bit
C/C++ applications.

• ActiveX—or OLE 2.0 Custom Control (OCX) in a 32-bit interface.
Visual Basic 4.0, Microsoft Visual C++ 4.0, Delphi 2.0, and most new
language tools support 32-bit ActiveX controls.

A hardware-specific
DriverLINX driver may not be
available on all platforms.

All DriverLINX language interfaces bind to “DrvLNX32.DLL”. This DLL is
operating system independent and allows you to run your binary application on
either Windows 95/98/Me, or Windows NT/2000 as long as you have installed the
correct DriverLINX driver for your hardware and operating system.

Interface with C/C++
To use the C/C++ interface,

1. Add the following C header files in the DLAPI subdirectory to your
program after including the standard Windows definitions:

#include “drvlinx.h” /* DriverLINX API */
#include “dlcodes.h” /* DriverLINX error codes and macros */
#include “oemcodes.h” /* OEM-specific model codes */

2. Add the following import library to your project or linker’s list of
libraries,

• DRVLNX32.LIB

Using Non-Microsoft C/C++ Compilers
Note that some compiler tools, such as Borland C/C++, use a library file format that
is not compatible with Microsoft’s format. Please check the DLAPI subdirectory
where you installed DriverLINX for library files compatible with your compiler. If
present, you will have to rename them to the above library names. If not present,
most compilers provide a tool to create a linking library given a DLL. Please consult
your compiler vendor’s documentation for assistance.

Interface with the Custom Control
DriverLINX supports one type of custom control:

1. OCX—32-bit ActiveX (formerly OLE) custom control

ActiveX Control
To add the ActiveX Custom Control (OCX) to your project, see the instructions for
your compiler and check the subdirectories where you installed DriverLINX for any
additional documentation. The filename of the 32-bit control is DLXOCX32.OCX.
The controls it contains are in a library called DriverLINX ActiveX
Controls.

Opening and Closing a DriverLINX Device Driver
To communicate with a physical device, applications must first open a device driver.
With DriverLINX, applications can either specify the name of a specific driver or
they can supply a blank name. In this case, or if the app specifies an unknown name,
DriverLINX will display the Open DriverLINX dialog requesting the user to select a
driver to open.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 45

For the MetraByte CTM Series, the name of the driver is “KMBCTM” and the driver
description is “MetraByte CTM Series”.

Applications should close the device driver when they no longer need its services.
Closing a DriverLINX driver stops all active tasks and unloads the driver from
memory.

Open a Driver in C/C++
To load and prepare a DriverLINX driver for application use, call the following
function:

HINSTANCE DLLAPI OpenDriverLINX (const HWND hWnd, LPCSTR name);

Parameter Type/Description

hWnd HWND Specifies one of the caller’s Window handles.

Name LPCSTR Specifies the name of the DriverLINX driver to load. If
NULL or the string specifies an unknown driver, DriverLINX
displays the Open DriverLINX dialog box.

This function returns an “instance handle” that the application must use to identify
the DriverLINX driver for the SelectDriverLINX and CloseDriverLINX function
calls. See “Selecting a DriverLINX Device Driver” on page 46 and “Close a Driver
in C/C++” on page 45.

Open a Driver with the Custom Control
To load and prepare a DriverLINX driver for application use with either the VBX or
OCX control, simply set the Req_DLL_name property to the name of the desired
driver.

Close a Driver in C/C++
To stop all active tasks and unload a DriverLINX driver, call the following function:

VOID DLLAPI CloseDriverLINX (const HINSTANCE hDLL);

Parameter Type/Description

hDLL HINSTANCE Specifies the instance handle returned by an
OpenDriverLINX call.

46 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Close a Driver with the Custom Control
To stop all active tasks and unload a DriverLINX driver, simply set the
Req_DLL_name property to a null string.

Selecting a DriverLINX Device Driver
To specify which hardware to control, DriverLINX uses an addressing scheme that
consists of the following parts:

• Logical Driver—the DriverLINX software for one or more devices in a
manufacturer’s product family.

• Logical Device—the number you assigned to a particular physical
device during configuration.

• Logical Subsystem—the board’s hardware components the application
intends to use.

• Logical Channel(s)—the data channels of a subsystem that the
application intends to use.

Applications specify the Logical Device, Subsystem, and Channel in the Service
Request. DriverLINX uses the last driver the application opened or selected for the
Logical Driver address.

If your application is controlling multiple devices that use different DriverLINX
device drivers, then the application must select the correct DriverLINX Logical
Driver before sending it a Service Request or other command.

Selecting a Driver in C/C++
To select a DriverLINX Logical Driver, call the following function before calling
any other DriverLINX function:

HINSTANCE DLLAPI SelectDriverLINX (const HINSTANCE hDLL);

Parameter Type/Description

hDLL HINSTANCE Specifies the instance handle returned by an
OpenDriverLINX call.

This function returns the “instance handle” of the last selected driver, if
SelectDriverLINX succeeds. If DriverLINX detects an error, SelectDriverLINX
returns zero.

Selecting a Driver with the Custom Control
The application should create at least one separate instance of the control for each
DriverLINX driver the application opens. See “Open a Driver with the Custom
Control” on page 45 for how to open a DriverLINX driver. The control instance will
automatically select the correct DriverLINX driver before sending any commands to
DriverLINX.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 47

Displaying the Edit Service Request Dialog
Applications can easily display the Edit Service Request property page at run time.
Most often you will find this a handy tool while you are developing and testing your
application, but you can also use it as a “hidden” feature for supporting problems
with a shipping product. Use this feature to

• experiment with different hardware capabilities,

• visually inspect how your application set up a Service Request,

• modify an incorrect property during testing without recompiling your
program,

• quickly learn how your application responds to different data-
acquisition rates or conditions,

• act as a temporary user interface before developing your own interface.

To pop-up the Edit Service Request dialog, first initialize the Service Request for any
task of your choosing. Then set the EDIT flag. When your application calls
DriverLINX, it will display the dialog. When the user dismisses the property page,
DriverLINX will remove the EDIT flag and return a result code. If DriverLINX
returns no error, simply recall DriverLINX with the current Service Request to have
DriverLINX execute it. If DriverLINX returns an error, the user canceled the Edit
Service Request property page. Your application should probably not execute the
Service Request.

Display Edit Service Request Dialog Using C/C++
//**
// Use this procedure to show Edit Service Request
//**

UINT ShowEditSR (LPServiceRequest pSR)
{
 // Caller sets up Service Request
 pSR->operation = (Ops)(pSR->operation | EDIT);
 // DriverLINX automatically removes EDIT flag
 // Caller can execute SR if there are no errors
 return DriverLINX(pSR);
}

Display Edit Service Request Dialog Using Visual Basic
’ Use this procedure to show Edit Service Request

Function ShowEditSR (dl As DriverLINXSR) As Integer
 ’ Caller should set up Service Request
 dl.Req_op_edit = DL_True
 dl.Refresh

 ’ DriverLINX automatically removes Req_op_edit flag
 ’ Caller can execute SR if there are no errors

 ShowEditSR = dl.Res_result
End Function

48 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Reporting a DriverLINX Error
Applications can use DriverLINX to display a pop-up message box to the user
describing the error or result of the last DriverLINX Service Request. Simply replace
the value of the Operation property in the Service Request with the “MessageBox”
operation and resubmit the Service Request to DriverLINX.

The DriverLINX message box displays the error severity, subsystem, and error text.
Error severities are

• Warning—errors that do not result in failure of function, such as data
overruns.

• Abort—Requested function was not performed. No ongoing functions
were disturbed. Request may be repeated after correcting the error.

• Fatal—Request was terminated with an unrecoverable error and/or
data loss.

• Internal—Unexpected errors resulting from corruption of device driver
data or device driver programming errors.

See the on-line DriverLINX Technical Reference Manual for a list of errors.

Display DriverLINX Message Box Using C/C++
//**
// Use this procedure to display DriverLINX messages
//**

UINT ShowDriverLINXMessage (LPServiceRequest pSR)
{
 // Assume caller passed an initialized Service Request
 UINT lastOp;

 lastOp = pSR->operation; // save current operation
 pSR->operation = MESSAGEBOX;

 UINT result;

 result = DriverLINX(pSR);

 pSR->operation = (Ops)lastOp; // restore last operation code
 return result;
}

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 49

Display DriverLINX Message Box Using Visual Basic
’ Use this procedure to display DriverLINX messages

Function ShowDriverLINXMessage(dl As DriverLINXSR) As Integer
 Dim lastOp As Integer
 With dl
 lastOp = .Req_op
 .Req_op = DL_MESSAGEBOX
 .Refresh
 .Req_op = lastOp
 ShowDriverLINXMessage = .Res_result
 End With
End Function

Stopping A DriverLINX Task
Applications can use a Service Request to stop a running DriverLINX task.
Applications may need to stop a task that is running too long, that a user wants to
abort, or that requires a software command to complete. For the counter/timer
subsystem, DriverLINX requires that all applications use a stop Service Request to
end polled tasks because DriverLINX cannot always detect task completion
automatically. DriverLINX can automatically terminate background tasks if the
Service Request contains a Stop Event that will eventually become true.

A Stop Service Request must
have a valid taskId property
that identifies a previous task.
DriverLINX sets taskId in the
Service Request after
successfully starting a task.

To stop a task, change the Operation property of a currently running Service Request
to “STOP” and submit the Service Request to DriverLINX. If DriverLINX stops the
task, it returns no error in the Result property. If the Service Request is not running
when the application attempts to stop it, DriverLINX returns a “Service Request not
found” error.

Stopping a Task Using C/C++
//***
// Use this procedure to stop any Service Request
//***

UINT StopDriverLINXTask (LPServiceRequest pSR)
{
 // Use same Service Request from START command
 // Change operation code
 pSR->operation = STOP;

 // Call DriverLINX to perform Service Request
 return DriverLINX(pSR);
}

Stopping a Task Using Visual Basic
’***
’ Use this procedure to stop any Service Request
’***

Function StopDriverLINXTask (dl As DriverLINXSR) As Integer
 ’ Use same Service Request from DL_START command
 ’ Change operation code
 With dl
 .Req_op = DL_STOP
 .Refresh
 StopDriverLINXTask = .Res_result
 End With
End Function

50 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Initializing the Device
Device initialization is the first step that all applications should perform after loading
a DriverLINX driver. Device initialization cancels all active Service Requests on the
device that the current process started and does a software reset of all subsystems.
Because DriverLINX supports sharing hardware devices among multiple processes,
the additional effects of device initialization vary.

• If the application is the only process using the device, DriverLINX
reconfigures and reinitializes the hardware to the user-defined state. If
you do not define initialization values for output ports, DriverLINX
writes zeros to output ports when the driver first loads and the last
known output value at any other Device Initialization.

• If multiple processes are sharing the device, DriverLINX does not
reconfigure or reinitialize the hardware state.

• If another process is executing a Service Request on the device,
DriverLINX performs initialization steps that will not interfere with the
other application and then returns a Device Busy error to app
requesting initialization.

To initialize a device, set up the Service Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> DEVICE OTHER INITIALIZE

The other properties of a Service Request are unused and should be set to zero.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 51

Initialize the Device Using C/C++
//**
// Use this procedure to initialize the hardware
//**

UINT InitDriverLINXDevice (LPServiceRequest pSR, UINT Device)
{
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 DL_SetServiceRequestSize(*pSR);

 pSR->hWnd = GetSafeHwnd();
 pSR->device = Device;
 pSR->subsystem = DEVICE;
 pSR->mode = OTHER;
 pSR->operation = INITIALIZE;

 return DriverLINX(pSR);
}

Initialize the Device Using Visual Basic
’ Use this procedure to initialize the hardware

Function InitDriverLINXDevice(dl As DriverLINXSR, ByVal Device As
Integer) As Integer
 With dl
 .Req_device = Device
 .Req_subsystem = DL_DEVICE
 .Req_mode = DL_OTHER
 .Req_op = DL_INITIALIZE
 ’ No events, buffers, channels needed
 .Evt_Tim_type = DL_NULLEVENT
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_N = 0
 .Refresh
 InitDriverLINXDevice = .Res_result
 End With
End Function

Initializing a Counter/Timer Subsystem
Applications may perform a subsystem initialization at any time to abort all
outstanding Service Requests that the calling process originally initiated. Usually
applications do not need to call this service.

52 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

To initialize a subsystem, set up the Service Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> CT OTHER INITIALIZE

The other properties of a Service Request are unused and should be set to zero.

Initialize a Subsystem Using C/C++
//***
// Use this procedure to initialize the counter/timer subsystem
//***

UINT InitCounterTimers (LPServiceRequest pSR, UINT Device)
{
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 DL_SetServiceRequestSize(*pSR);

 pSR->hWnd = GetSafeHwnd();
 pSR->device = Device;
 pSR->subsystem = CT;
 pSR->mode = OTHER;
 pSR->operation = INITIALIZE;

 return DriverLINX(pSR);
}

Initialize a Subsystem Using Visual Basic
’ Use this procedure to initialize the counter/timer subsystem

Function InitCounterTimers(dl As DriverLINXSR, ByVal Device As Integer)
As Integer
 With dl
 .Req_device = Device
 .Req_subsystem = DL_CT
 .Req_mode = DL_OTHER
 .Req_op = DL_INITIALIZE
 ’ No events, buffers, channels needed
 .Evt_Tim_type = DL_NULLEVENT
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_N = 0
 .Refresh
 InitCounterTimers = .Res_result
 End With
End Function

Using Messages and Events
DriverLINX can report task information to your application using the Windows
messages or events. See “DriverLINX Events” on page 27 and the on-line
DriverLINX Technical Reference Manual for more information.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 53

Events for Foreground Tasks
For polled mode tasks, DriverLINX only reports ServiceStart and ServiceDone
events to your application. This provides consistency with the background tasks
modes so that if your application uses these events, its logic is the same for
foreground and background modes.

If you are trying to use foreground tasks in a fast loop and you are not using these
messages, you may wish to tell DriverLINX not to send these messages. This can
sometimes increase the speed of the loop.

Disable ServiceStart and ServiceDone Using C/C++
//**
// Use this procedure to disable SeviceStart and ServiceDone
//**

void DisableServiceStartDone (LPServiceRequest pSR)
{
 // Caller sets up Service Request
 pSR->taskFlags |= NO_SERVICESTART | NO_SERVICEDONE;
}

Disable ServiceStart and ServiceDone Using Visual Basic
’**
’ Use this procedure to disable SeviceStart and ServiceDone
’**

Sub DisableServiceStartDone (dl As DriverLINXSR)
 ’ Caller sets up Service Request
 With dl
 .Sel_taskFlags = .Sel_taskFlags Or NO_SERVICESTART Or
NO_SERVICEDONE
 End With
End Sub

Events for Background Tasks
By default, DriverLINX sends background tasks ServiceStart and ServiceDone
messages and always sends DataLost and CriticalError messages if DriverLINX
detects any problems. DriverLINX only sends the other messages if the application
tells DriverLINX to do so.

Enable and Use Messages Using C/C++

Enable Optional Messages

//**
// Use this procedure to enable optional DriverLINX messages
//**

void EnableAllEvents (LPServiceRequest pSR)
{
 // Caller sets up Service Request
 if (pSR->lpBuffers)
 pSR->lpBuffers->notify |= NOTIFY | NOTIFY_START | NOTIFY_STOP;
}

54 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Message Handling in C/C++ or MFC

//**
// C/C++ procedure for using DriverLINX messages
//**

// Register custom DriverLINX message
UINT gDL_Msg = RegisterWindowMessage(DL_MESSAGE);

// If you’re using MFC, then add the following to your classes
// message map:
// BEGIN_MESSAGE_MAP(xxx, yyy)
// ON_REGISTERED_MESSAGE(gDL_Msg, OnDLMessage)
// END_MESSAGE_MAP()
//
// Then change the function below to
// LRESULT OnDLMessage (WPARAM wParam, LPARAM lParam)
// and delete the line:
// if (message == gDL_Msg)

LRESULT OnDLMessage (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 // Was message posted by DriverLINX?
 if (message == gDL_Msg)
 switch (wParam) {
 case DL_SERVICESTART:
 break;
 case DL_SERVICEDONE:
 switch (getSubSystem(lParam)) {
 case CT:
 break;
 } // switch
 break;
 case DL_TIMERTIC:
 break;
 case DL_BUFFERFILLED:
 break;
 case DL_DATALOST:
 break;
 case DL_CRITICALERROR:
 break;
 } // switch
 return 0;
}

Enable and Use Messages Using Visual Basic

Enable Optional Events

'**
' Use this procedure to enable optional DriverLINX events
'**

Sub EnableAllEvents (dl As DriverLINXSR)
 ' Caller sets up Service Request
 With dl
 If .Sel_buf_N > 0 Then
 .Sel_buf_notify = .Sel_buf_notify Or DL_NOTIFY Or DL_NOTIFY_START
Or DL_NOTIFY_STOP
 End If
 End With
End Sub

Event Handling in Visual Basic

Visual Basic will automatically generate for all DriverLINX events empty
subroutines where you can add event-handling logic. See the on-line DriverLINX/VB
Technical Reference Manual for more details.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 55

Counter Output
Counter/timers generate an output signal when they reach their limit or rollover the
count value. When using the Am9513, the application can explicitly program how
the counter/timer channel signals the output terminal. The output mode for the 8254
is less flexible and dependent on the hardware’s counter mode. DriverLINX supports
the outputs shown in “Table 6 Allowed Values for Rate Event Output Property” on
page 25.

Applications can also select DriverLINX’s default output value for any counter/timer
channel. For every counter/timer mode, DriverLINX defines a default output value
as shown in the following table:

Default Output Generator Description

Intel 8254 KPCI-3140 Am9513

RateGen Periodic rate generator LoActive LoToggled HiActive

SqWave Square wave generator HiToggled LoToggled Toggled

VDCGen Variable duty cycle rate
generator

 LoToggled HiToggled

BurstGen Burst rate generator HiActive

Divider Frequency divider LoToggled HiActive

Freq Frequency counter HiActive

Interval Interval timer HiActive

Count Event counter HiActive

PulseWd Pulse width measurement HiActive

SplitClk Split frequency rate
generator

 HiActive

FskGen Frequency-shift keying Toggled

PulseGen Pulse generator LoToggled Toggled

Retrig
RateGen

Retriggerable rate generator HiActive

Retrig
SqWave

Retriggerable square wave
generator

 Toggled

Count32 32-bit event counter HiActive

Count64 64-bit event counter HiActive

Freq32 32-bit frequency counter HiActive

FreqRatio Frequency ratio counter HiActive

OneShot One-shot pulse or strobe LoToggled
(Mode 0),
LoActive
(Mode 5)

LoActive HiActive

Retrig
OneShot

Retriggerable one-shot pulse
or strobe

LoToggled
(Mode 1),
LoActive
(Mode 4)

 HiActive

Table 15 Default Counter/Timer Output Values

56 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Status Polling a Counter/Timer
Applications can monitor the current value and status of one or more counter/timer
channels using a Service Request. DriverLINX’s handling of status polling for
counter/timer subsystem depends on the type of task.

• In non-buffered, polled mode, DriverLINX returns the current counter
value and status in the Results Group of the Service Request.

• When using a buffered, polled group task, DriverLINX saves the
current counter value in the buffer for each Logical Channel in the
group.

• For buffered, interrupt tasks, DriverLINX returns the current buffer
number and the position of the next sample to write.

See “Converting Between Counts and Time” on page 58 for how to convert counts to
time.

Polling a Counter/Timer Using C/C++
//***
// Use this procedure to read a counter/timer
//***

DWORD ReadCounterTimer (LPServiceRequest pSR, UINT* pResult)
{
 UINT result;

 // Use same Service Request from a Start Service Request
 // Change operation code
 pSR->operation = STATUS;

 // Call DriverLINX to perform Service Request

 result = DriverLINX(pSR);
 if (pResult)
 *pResult = result;
 if (result != NoErr)
 return (DWORD)-1;

 if (pSR->status.u.timerStatus.status == done)
 StopDriverLINXTask(pSR);

 // Return current count
 return pSR->status.u.timerStatus.count;
}

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 57

Polling a Counter/Timer Using Visual Basic
’***
’ Use this procedure to read a counter/timer
’***

Function ReadCounterTimer (dl As DriverLINXSR, result As Integer) As
Long
 ’ Use same Service Request from a Start Service Request
 With dl
 ’ Change operation code
 .Req_op = DL_STATUS
 .Refresh
 result = .Res_result
 If .Res_result <> DL_NoErr Then
 ReadCounterTimer = -1
 Exit Function
 End If
 End With

 If dl.Res_Tim_status = DL_done Then
 StopDriverLINXTask dl
 End If

 ’ Return current count
 ReadCounterTimer = dl.Res_Tim_count
End Function

Configuring a Counter/Timer Channel
Applications can configure and arm a Logical Channel for a counter/timer without
actually starting a task on the counter/timer. This is useful for creating custom
counter/timer operations that use multiple counters and for pre-configuring several
counter/timer channels that you want to start simultaneously as a group. See
“Individual and Group Tasks” on page 29.

When an application configures a counter/timer, DriverLINX initializes the hardware
for the requested Logical Channel, but it does not start, or arm, the counter. To start a
previously configured counter, the application should add the Logical Channel to the
channel list of a group task. See “Controlling Group Tasks” on page 63.

To configure a counter/timer, set up the Service Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> CT OTHER CONFIGURE

Set up the Events Group as follows:

Timing Start Stop

Rate None None

The properties of the timing event control how DriverLINX configures the hardware.
A CONFIGURE operation sets the mode of only one counter so, in general, the task-
oriented functions cannot be used for the mode. See “Hardware Reference” on page
113 Operating Modes for details on the available modes and the corresponding
hardware behavior.

58 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Converting Between Counts and Time
DriverLINX expresses all time units as the number of tics of a board’s master clock.
The Period and onCount properties of the Service Request as well as the counter
values DriverLINX returns are all in tic units. To make it easy for applications to
convert between tic units and seconds, DriverLINX supports two methods:

• Sec2Tics—converts time in seconds to hardware tic units.

• Tics2Sec—converts time in hardware tic units to seconds.

Time Conversion in C/C++

Sec2Tics
This function converts the time in seconds for a counter/timer Logical Channel to
clock tics. The function syntax is

DWORD DLLAPI Sec2Tics (UINT device, SubSystems subsystem, UINT
LogicalChannel, float secs);

This function returns the result in clock tic units as an unsigned 32-bit word. If the
function detects an error, it returns zero.

Parameter Type/Description

device WORD Specifies the Logical Device of the
counter/timer board.

subsystem SubSystems Specifies the counter/timer
subsystem.

LogicalChannel UINT Specifies the Logical Channel of the
counter/timer. Symbolic values, e.g.,
DEFAULTTIMER, are acceptable.

Secs float Specifies the time value in seconds to
convert to tics.

Tics2Sec
This function converts the time in clock tics for a counter/timer Logical Channel to
seconds. The function syntax is

BOOL DLLAPI Tics2Sec (UINT device, SubSystems subsystem, UINT
LogicalChannel, DWORD tics, float* pFloat);

This function returns TRUE if the conversion was successful, otherwise it returns
FALSE. The function returns the converted result at pFloat.

Parameter Type/Description

device UINT Specifies the Logical Device of the
counter/timer board.

subsystem SubSystems Specifies the counter/timer
subsystem.

LogicalChannel UINT Specifies the Logical Channel of the
counter/timer. Symbolic values, e.g.,

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 59

DEFAULTTIMER, are acceptable.

tics DWORD Specifies the counter/timer value
in hardware tics.

pFloat float* Specifies a 32-bit pointer to a singe-
precision floating-point variable where
DriverLINX stores the converted result in
seconds. If an error occurs, the value of this
field is undefined.

Time Conversion Using the Custom Control
For the 16-bit VBX, the following functions are DLL exports from
“DrvLnxVB.DLL”. For the ActiveX controls, the functions are control methods.

DLSecs2Tics
This method converts the time in seconds for a counter/timer Logical Channel to
clock tics. The method syntax is

<control>.DLSecs2Tics (ByVal LogicalChannel As Integer, ByVal secs As
Single) As Long

This method returns the result in clock tic units as a 32-bit integer. If the method
detects an error, it returns zero.

Parameter Type/Description

LogicalChannel Integer Specifies the Logical Channel of the
counter/timer. Symbolic values, e.g.,
DL_DEFAULTTIMER, are acceptable.

Secs Single Specifies the time value to convert in
seconds.

DLTics2Secs
This method converts the time in clock tics for a counter/timer Logical Channel to
seconds. The method syntax is

<control>.DLTics2Secs (ByVal LogicalChannel As Integer, ByVal tics As
Long) As Single

This method returns the converted time in seconds. If an error occurs, DriverLINX
returns 0.0.

Parameter Type/Description

LogicalChannel Integer Specifies the Logical Channel of the
counter/timer. Symbolic values, e.g.,
DL_DEFAULTTIMER, are acceptable.

tics Long Specifies the counter/timer value in
hardware tics.

60 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Using Background Tasks
DriverLINX can run counter/timer tasks in the background asynchronously
collecting data while the application processes other data in the foreground.
DriverLINX can support asynchronous mode only if the counter/timer board
supports interrupts, and you have configured the board to use an available interrupt.

Background, interrupt-driven tasks can either report an event to the application at
each interrupt or they can use a data buffer to collect samples at each interrupt.

Using a Counter/Timer to Generate Clock
Messages
DriverLINX can post a “timer tic” message or event to an application at each
interrupt by a counter/timer channel if the Service Request does not specify any data
buffers. See “DriverLINX Events” on page 27.

To start a counter/timer generating an interrupt, set up the Request Group in a
Service Request as follows:

Device Subsystem Mode Operation

<Logical Device> CT INTERRUPT START

Set up the Events Group as follows:

Timing Start Stop

Rate None None

Then set up the timing event using any of the single counter/timer Rate Events
described in this manual or in “Hardware Reference” on page 113 Operating Modes.

To create a simple, periodic clock on any available Logical Channel, use the
following setup for a Rate Event:

Mode Period Gate Pulses

RATEGEN period DISABLED 0

Note that Windows or your application cannot keep up with the highest interrupt rate
the counter/timer can generate. At moderately high rates, your application message
queue may overflow and timer tics will be lost. At very high interrupt rates,
Windows will skip interrupts and may become very sluggish or unstable.

To create a single timer tic message after a known interval, use the following setup
for a Rate Event:

Mode Period Gate Pulses

ONESHOT period DISABLED 1

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 61

Note that the counter/timer hardware design only allows DriverLINX to support
timer tics on one running counter/timer at a time.

Storing the Counter/Timer Value at Each Interrupt
DriverLINX can store the current value of a counter/timer into a memory buffer at
each interrupt.

Note that Windows or your application cannot keep up with the highest interrupt rate
the counter/timer can generate. At high interrupt rates, Windows will skip interrupts
and may become very sluggish or unstable.

To start a counter/timer generating an interrupt, set up the Request Group in a
Service Request as follows:

Device Subsystem Mode Operation

<Logical Device> CT INTERRUPT START

Set up the Events Group as follows:

Timing Start Stop

Rate or
Digital

Command or
Digital

Terminal Count or
Command or
Digital

The Timing Event specifies the pacing or interrupt source.

• Rate Events use a counter/timer channel to generate an interrupt source.
Use any of the single counter/timer modes described in “Hardware
Reference” on page 113 Operating Modes.

• Digital Events use the hardware’s external interrupt input line as the
interrupt source. See “Using the External Interrupt Input Line” on page
62.

To create a simple, periodic clock on any available Logical Channel, use the
following setup for a Rate Event:

Mode Period Gate Pulses

RATEGEN period DISABLED 0

62 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

The Start and Stop Events determine when the DriverLINX task starts and stops
saving counter values at each interrupt.

• Command—starts or stops the task on software command.

• Digital—starts or stops the task when the masked digital input satisfies
the pattern matching condition in the event. See “Using Digital Start
and Stop Events” on page 63.

• Terminal Count—stops the task DriverLINX has filled the buffers
with count values once.

DriverLINX can optionally
post “buffer filled” messages
to the application as
DriverLINX completes
processing each buffer. See
“DriverLINX Events” on
page 27.

To start or stop data transfer on software command, use Command Events for the
Start or Stop Event. If you use a Stop Command or Digital Event, after DriverLINX
finishes processing the last buffer, it will automatically start writing data again into
the first buffer. With a Stop Command, DriverLINX will acquire data until the
application resets the Service Request’s Operation property to Stop and resubmits
the Service Request to DriverLINX.

Select Buffers

Set the number of Buffers between 1 and 255 and the BufferSize property to the
number of bytes to transfer. Buffers must contain an integral multiple of the total
number of channels specified in the Service Request. DriverLINX can optionally
post “buffer filled” messages to the application as DriverLINX completes processing
each buffer. See “DriverLINX Events” on page 27.

Using the External Interrupt Input Line

DriverLINX has no software
control over the CTM’s
external interrupt enable
input.

Use a Digital Timing Event to tell DriverLINX which external hardware input
source to use for the interrupt. DriverLINX models the external hardware interrupt
lines as 1-bit digital input ports. Set up the Digital Event as follows:

Channel Mask Match Pattern

<external interrupt
channel>

<input lines to test> FALSE or “not
equal”

0

• For the Channel, either specify the Logical Channel DriverLINX has
assigned as the external interrupt input line (see the Logical Device
Descriptor) or use a hardware-independent, symbolic Logical Channel,
DI_EXTCLK. DriverLINX automatically replaces this value with the
correct hardware channel when the app sends the Service Request to
DriverLINX.

• Use the Mask property to indicate which line(s) to enable for interrupts.
Most boards only support one external interrupt line so use a value of 1.

• Set the Match and Pattern properties to “not equal zero”. This specifies
that a rising edge at any input will trigger the interrupt. Other values for
these properties will generate an error.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 63

Using Digital Start and Stop Events

DriverLINX can optionally
post “start trigger” and “stop
trigger” messages to the
application. See the on-line
DriverLINX Technical
Reference Manual for more
information about messages.

To start or stop data transfer when a certain condition occurs on a digital input
channel, use a Digital Event for the Start or Stop Event. At each interrupt,
DriverLINX tests the requested Logical Channel for the trigger event. If DriverLINX
detects the start trigger, it starts processing the data buffers immediately. After
processing one sample or scan, DriverLINX tests for the stop trigger event, and, if
found, stops processing data immediately. Note that a digital input may change value
between the time the interrupt occurs and when DriverLINX reads the Logical
Channel for a trigger.

Set up a Digital Event as follows:

Channel Mask Match Pattern

<Logical Channel> <input lines to test> 0 - “not equal” or
1 - “equal”

<pattern to match>

• For the Channel property, specify the Logical Channel for any digital
input port.

• Use the Mask property to select which input bits to test as a digital
trigger.

• Use the Match property to select how DriverLINX tests for a digital
trigger.

• Use the Pattern property to specify the bits DriverLINX uses for
comparison.

DriverLINX supports two types of digital triggers tests based on the value of the
Match property.

Match Value Trigger Test

0 — Not Equals Channel AND Mask != Pattern

1 — Equals Channel AND Mask == Pattern

With a Stop Digital Event, DriverLINX will terminate acquisition either when the
digital input value satisfies the digital trigger condition or when the application sends
a stop operation.

If the Delay property of a Digital Event is not zero, DriverLINX will not trigger the
event until it has counted the number of additional interrupts the app specified in the
Delay property. As a special case, if the stop Delay property has the maximum count,
DriverLINX treats this event as “stop on command”, but it will send a message to the
application each time it detects the stop event.

Controlling Group Tasks
Group tasks give your application more control over the counter/timer subsystem. It
can configure counter/timers in any basic mode that the hardware supports, and start
or stop multiple counter/timers at the same time. You can create polled mode groups
and interrupt mode groups. For polled mode groups, DriverLINX starts or stops all
counter/timers at the same time. Applications can poll the status of counter/timers in

64 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

the group while the task is running. For interrupt mode groups, DriverLINX also
starts or stops all counter/timers at the same time, but DriverLINX writes the current
counter/timer values into a buffer at each interrupt. The trade-off is that your
application must perform its own analysis of the buffers as DriverLINX cannot
discern the aggregate function of your group task.

To use a group task, you must first individually configure the counter/timers you
wish to use in a group. To configure a Logical Channel, you set up the Logical
Channel with the same properties you would normally use for a basic counter/timer
task, but you must change the Operation property from “Start” to “Configure”. See
“Configuring a Counter/Timer Channel” on page 57 and “Hardware Reference” on
page 113 Operating Modes.

To designate Logical Channels as members of a group, set up a Service Request and
use the Select Channels Group to specify the Logical Channels in the group.

Select Channels
To tell DriverLINX which Logical Channels are members of the group task, use the
Select Channels Group properties. You can specify a group consisting of a single
channel, a range of channels, or a list of channels.

To set up the Select Channels Group for one Logical Channel:

Number of channels Start Channel Format

1 <Logical Channel> native

To set up the Select Channels Group for a consecutive range of channels:

Number of
channels

Start Channel Stop Channel Format

2 <Logical Channel> <Logical Channel> native

Specify the number of
channels as 2, not the number
of channels in the consecutive
sequence.

DriverLINX scans all channels between the starting and stopping channel. If the
starting channel is greater than the stopping channel, the channel sequence wraps
around at the highest Logical Channel and continues from zero.

To set up the Select Channels Group for a random channel list:

Number of
channels

Channeli GainI Format

<size of list> <Logical Channel> 0 native

DriverLINX can transfer one Logical Channel at each interrupt or transfer all the
specified Logical Channels (a scan) at each interrupt. The Simultaneous property
tells DriverLINX to transfer either one channel (unchecked or false) or all channels
(checked or true) at each interrupt. Most counter/timer hardware does not support
true simultaneous transfers, so DriverLINX rapidly reads each channel in a loop.

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 65

Polled Mode Groups
In a preemptive multitasking
system, the delay between
two instructions can vary
significantly and
unpredictably.

For a polled mode group, DriverLINX ideally starts or stops all counter/timers in the
group using a single hardware operation. However, some hardware does not support
this for all Logical Channels. The CTM-10 uses one Am9513 chips to control
Logical Channels 0 to 4 and another chip for Logical Channels 5 to 9. In this case,
DriverLINX must use two separate instructions to control each chip. For boards that
use an 8254 chip, DriverLINX must use a separate instruction for each Logical
Channel.

To start a polled mode group, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop

None None None

The Service Request needs no Timing Event as each counter/timer in a group runs
independently. See “Select Channels” on page 64 for how to specify the Logical
Channels for a group.

If you need to read the current counter values of channels in a group, set up a single
buffer with one sample for each Logical Channel in the Service Request. When your
application performs status polling with the Service Request (see “Status Polling a
Counter/Timer” on page 56), DriverLINX will store the current counter value of
every channel in the Service Request into the buffer rather than returning a single
value in the Service Request. If your application does not need status polling, set the
number of buffers to zero in the Service Request.

Starting a Polled Mode Group Using C/C++
Note that the following C example will cause memory leaks unless the calling
application takes responsibility for freeing the following memory after stopping the
Service Request for the group task:

• Channel Gain List in the Service Request

• Buffer List in the Service Request

• Buffers in the Service Request’s Buffer List

66 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

//***
// Use this procedure to start a polled mode group task
//***

UINT StartPolledGroup (LPServiceRequest pSR,
 UINT LogicalDevice,
 UINT nChannels,
 int channels[])
{
 // Set up Service Request to perform task

 // First zero Service Request structure
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 // Then initialize structure size
 DL_SetServiceRequestSize(*pSR);

 // Set up Request Group of Service Request
 pSR->hWnd = GetSafeHwnd();
 pSR->device = LogicalDevice;
 pSR->subsystem = CT;
 pSR->mode = POLLED;
 pSR->operation = START;

 // Set up channel list
 pSR->channels.nChannels = nChannels;
 if (pSR->channels.nChannels) {
 pSR->channels.chanGainList =
 (LPCHANGAIN)malloc(nChannels * sizeof(CHANGAIN));
 // N.B. Caller must free this memory
 if (pSR->channels.chanGainList)
 // Zero structure
 memset(pSR->channels.chanGainList, 0,
 pSR->channels.nChannels * sizeof(CHANGAIN));
 else
 pSR->channels.nChannels = 0;
 for (UINT i = 0; i < pSR->channels.nChannels; ++i) {
 pSR->channels.chanGainList[i].channel =
 (SINT)channels[i];
 pSR->channels.chanGainList[i].gainOrRange = 0;
 } // for
 }

 // Set up optional buffer list for status readback
 // A buffer list isn’t required if you don’t need
 // per channel status info
 if (pSR->channels.nChannels) {
 pSR->lpBuffers = (LPBUFFLIST)malloc(DL_BufferListBytes(1));
 // N.B. Caller must deallocate buffer list memory
 if (pSR->lpBuffers) {
 // Zero structure
 memset(pSR->lpBuffers, 0, sizeof(DL_BUFFERLIST));
 pSR->lpBuffers->nBuffers = 1;
 // Always use 1 buffer for status polling
 // Allocate 1 element per channel
 pSR->lpBuffers->bufferSize =
 sizeof(WORD) * pSR->channels.nChannels;
 // Let DriverLINX allocate memory for data-acq buffers
 pSR->lpBuffers->BufferAddr[0] =
 BufAlloc(GBUF_POLLED, pSR->lpBuffers->bufferSize);
 // N.B. Caller must deallocate buffer memory using BufFree
 } // if
 } // if

 // Call DriverLINX to perform Service Request
 return DriverLINX(pSR);
}

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 67

Starting a Polled Mode Group Task Using Visual Basic
’***
’ Use this procedure to start a polled mode group task
’***
Function StartPolledGroup (dl As DriverLINXSR, ByVal LogicalDevice As
Integer, ByVal nChannels As Integer, Channels() As Integer) As Integer
 ’ Set up Service Request to perform task
 Dim i As Integer
 With dl
 .Req_device = LogicalDevice
 .Req_subsystem = DL_CT
 .Req_mode = DL_POLLED
 .Req_op = DL_START

 ’ Events are not required
 .Evt_Tim_type = DL_NULLEVENT
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT

 ’ Set up optional buffer list for status readback
 ’ A buffer list isn’t required if you don’t need
 ’ per channel status info
 .Sel_buf_N = 1
 .Sel_buf_samples = nChannels

 ’ Set up channel list
 .Sel_chan_format = DL_tNATIVE
 .Sel_chan_N = nChannels
 For i = 0 to nChannels - 1
 .Sel_chan_list(i) = Channels(i)
 .Sel_chan_gainCodeList(i) = 0
 Next i

 .Refresh
 StartPolledGroup = .Res_result
 End With
End Function

Interrupt Mode Groups
In a preemptive multitasking
system, the delay between
two instructions can vary
significantly and
unpredictably.

For an interrupt mode group, DriverLINX ideally starts or stops all counter/timers in
the group using a single hardware operation. However, some hardware does not
support this for all Logical Channels. The CTM-10 uses one Am9513 chips to
control Logical Channels 0 to 4 and another chip for Logical Channels 5 to 9. In this
case, DriverLINX must use two separate instructions to control each chip. For
boards that use an 8254 chip, DriverLINX must use a separate instruction for each
Logical Channel.

To start an interrupt mode group, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> CT INTERRUPT START

Set up the Events Group as follows:

Timing Start Stop

Digital or Command or Command or

68 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Rate Digital Digital or
Terminal Count

DriverLINX uses the Timing Event as the interrupt source that it uses to read the
current counter value of each counter/timer in the channel list into the data buffers. If
you wish to also read the current value of the interrupt counter/timer, include its
Logical Channel number in the channel list for the Service Request. See “Select
Channels” on page 64 for how to specify the Logical Channels for a group.

To use the external interrupt input line, see “Using the External Interrupt Input Line”
on page 62.

See “Using Digital Start and Stop Events” on page 63 for how to set up the Start and
Stop Events for an interrupt group task.

Using Digital I/O Tasks

Reading or Writing a Single Digital Value
Applications can read or write a single value for a digital port using a Service
Request for the digital input or output subsystem.

To transfer a single value, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> <Digital Subsystem> POLLED START

Set up the Events Group as follows:

Timing Start Stop

None None or
Command

None or
Terminal Count

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 69

For a Start Event, None and Command are equivalent for a Start Event as are None
and Terminal Count for a Stop Event. Start on Command and stop on Terminal
Count tells DriverLINX to transfer the data once.

Select Channels

Set up the Select Group Channels as follows:

Number of channels Start Channel Format

1 <Logical Channel> native

Select Buffers

Single-value transfers use ioValue property in the Service Request instead of a buffer
to hold the data. Set the number of Buffers to zero. For output, assign the value to
write to the ioValue property in the Results Group. For input, read the input from the
ioValue property after executing the Service Request.

To write a single value, set up the Status Group of the Service Request as follows:

Type ioValue

IOVALUE <value>

70 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Read or Write a Single Value Using C/C++

Write a Single Value

//***
// Use this procedure to write a single value
// to a specific channel
//***

UINT WriteChannel (LPServiceRequest pSR, UINT Device,
 UINT Channel, DWORD Value)
{
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 DL_SetServiceRequestSize(*pSR);

 pSR->hWnd = GetSafeHwnd();
 pSR->device = Device;
 pSR->subsystem = DO;
 pSR->mode = POLLED;
 pSR->operation = START;

 pSR->channels.nChannels = 1;
 pSR->channels.chanGain[0].channel = Channel;

 pSR->status.typeStatus = IOVALUE;
 pSR->status.u.ioValue = Value;

 return DriverLINX(pSR);
}

Read a Single Value

//*************************************
// Use this procedure to read one value
// from a specific channel
//*************************************

DWORD ReadChannel (LPServiceRequest pSR, UINT Device, UINT Channel,
 UINT* pResult)
{
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 DL_SetServiceRequestSize(*pSR);

 pSR->hWnd = GetSafeHwnd();
 pSR->device = Device;
 pSR->subsystem = DI;
 pSR->mode = POLLED;
 pSR->operation = START;

 pSR->channels.nChannels = 1;
 pSR->channels.chanGain[0].channel = Channel;

 UINT result;
 result = DriverLINX(pSR);
 if (pResult)
 *pResult = result;
 if (result != NoErr)
 return (DWORD)-1;

 return pSR->status.u.ioValue;
}

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 71

Read or Write a Single Value Using Visual Basic

Write a Single Value

’ Use this procedure to write one sample
’ to a specific channel

Function WriteChannel(dl As DriverLINXSR, ByVal Channel As Integer,
ByVal Value As Integer) As Integer
 Dim Res%
 With dl
 .Req_subsystem = DL_DO
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_NULLEVENT
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_format = DL_tNATIVE
 .Sel_chan_N = 1
 .Sel_chan_start = Channel
 .Res_Sta_ioValue = Value
 .Refresh
 WriteChannel = .Res_result
 End With
End Function

Read a Single Value

’ Use this procedure read one sample
’ from a specific channel

Function ReadChannel(dl As DriverLINXSR, ByVal Channel As Integer,
result As Integer) As Integer
’ Set up for polled digital input of 1 sample
With dl
 .Req_subsystem = DL_DI
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_NULLEVENT
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_format = DL_tINTEGER
 .Sel_chan_N = 1
 .Sel_chan_start = Channel
 .Refresh
 result = .Res_result
 End With
 If dl.Res_result = DL_NoErr Then
 ReadChannel = dl.Res_Sta_ioValue
 End If
End Function

72 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Reading or Writing Specific Digital Bits
Applications can write specific bits to a digital port using a Digital Event to supply a
bit mask. Use this technique to set single bits in an output port or to share an output
port between threads or processes.

Setting up masked I/O is similar to single value transfers. First, set up the Request
Group as follows:

Device Subsystem Mode Operation

<Logical Device> <Digital Subsystem> POLLED START

Set up the Events Group as follows:

Timing Start Stop

None Digital None or
Terminal Count

For a Stop Event, None or Terminal Count are equivalent.

Start Event

Set up the Digital Event as follows:

Channel Mask Match Pattern

<Logical Channel> <bit mask> <unused> <unused>

DriverLINX composes the new output value for the port as

new value = (old value AND NOT Mask) OR (user value AND Mask).

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 73

Select Channels

Set up the Select Group Channels as follows:

Number of channels Start Channel Format

1 <Logical Channel> native

Select Buffers

Single-value transfers use ioValue property in the Service Request instead of a buffer
to hold the data. Set the number of Buffers to zero. For output, assign the value to
write to the ioValue property in the Results Group. For input, read the input from the
ioValue property after executing the Service Request.

To write a single value, set up the Status Group of the Service Request as follows:

Type ioValue

IOVALUE <value>

Write a Masked Value Using C/C++
//***
// Use this procedure to read one value from a specific
// channel
//***

UINT WriteBits (LPServiceRequest pSR, UINT Device, UINT Channel, UINT
Value, UINT Mask)
{
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 DL_SetServiceRequestSize(*pSR);

 pSR->hWnd = GetSafeHwnd();
 pSR->device = Device;
 pSR->subsystem = DO;
 pSR->mode = POLLED;
 pSR->operation = START;

 pSR->start.typeEvent = DIEVENT;
 pSR->start.u.diEvent.channel = Channel;
 pSR->start.u.diEvent.mask = Mask;
 pSR->start.u.diEvent.match = FALSE;
 pSR->start.u.diEvent.pattern = 0;

 pSR->channels.nChannels = 1;
 pSR->channels.chanGain[0].channel = Channel;

 pSR->status.typeStatus = IOVALUE;
 pSR->status.u.ioValue = Value;

 return DriverLINX(pSR);
}

74 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Write a Masked Value Using Visual Basic
Function WriteBits(dl As DriverLINXSR, ByVal Channel As Integer, ByVal
Value As Integer, ByVal Mask As Integer)As Integer
 ’ Set up for polled digital output of 1 sample
 With dl
 .Req_subsystem = DL_DO
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_NULLEVENT
 .Evt_Str_type = DL_DIEVENT
 .Evt_Str_diChannel = Channel
 .Evt_Str_diMask = Mask
 .Evt_Str_diMatch = DL_NotEquals
 .Evt_Str_diPattern = 0
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_format = DL_tNATIVE
 .Sel_chan_N = 1
 .Sel_chan_start = Channel
 .Res_Sta_ioValue = Value
 .Refresh
 WriteBits = .Res_result
 End With
End Function

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 75

Rapidly Transferring a Block of Digital Data
Applications can rapidly transfer a single data buffer of values to or from a digital
I/O port using the computer’s block I/O hardware instructions. Note that not all
hardware boards are able to sustain the I/O transfer rate on faster computers.

To transfer a buffer, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> <Logical
Subsystem>

POLLED START

Set up the Events Group as follows:

Timing Start Stop

None None or
Command

None or
Terminal Count

For a Start Event, None and Command are equivalent for a Start Event as are None
and Terminal Count for a Stop Event. Start on Command and stop on Terminal
Count tells DriverLINX to transfer the data in buffer once.

Select Channels

Set up the Select Group Channels as follows:

Number of channels Start Channel Format

1 <Logical Channel> native

76 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Select Buffers

Set the number of Buffers to one and the BufferSize to the number of bytes to
transfer.

Read or Write a Single Buffer Using C/C++

Read One Buffer

//**********************************
// Use this procedure to read a data
// array from a specific channel
//**********************************

UINT ReadChannelBuff (LPServiceRequest pSR, UINT Device, UINT Channel,
 PVOID Buffer, DWORD Length)
{
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 DL_SetServiceRequestSize(*pSR);

 pSR->hWnd = GetSafeHwnd();
 pSR->device = Device;
 pSR->subsystem = DI;
 pSR->mode = POLLED;
 pSR->operation = START;

 pSR->channels.nChannels = 1;
 pSR->channels.chanGain[0].channel = Channel;

 pSR->lpBuffers = (LPBUFFLIST)malloc(DL_BufferListBytes(1));
 // N.B. Caller must deallocate buffer list memory
 if (!pSR->lpBuffers)
 return Error(Abort, BufAllocErr);

 pSR->lpBuffers->nBuffers = 1;
 pSR->lpBuffers->bufferSize = Length;
 pSR->lpBuffers->BufferAddr[0] = Buffer;

 return DriverLINX(pSR);
}

DriverLINX Counter/Timer User’s Guide Programming Counter/Timers with DriverLINX • 77

Write One Buffer

//***********************************
// Use this procedure to write a data
// array to a specific channel
//***********************************

UINT WriteChanBuf (LPServiceRequest pSR, UINT Device, UINT Channel,
 PVOID Buffer, DWORD Length)
{
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 DL_SetServiceRequestSize(*pSR);

 pSR->hWnd = GetSafeHwnd();
 pSR->device = Device;
 pSR->subsystem = DO;
 pSR->mode = POLLED;
 pSR->operation = START;

 pSR->channels.nChannels = 1;
 pSR->channels.chanGain[0].channel = Channel;

 pSR->lpBuffers = (LPBUFFLIST)malloc(DL_BufferListBytes(1));
 if (!pSR->lpBuffers)
 return Error(Abort, BufAllocErr);

 pSR->lpBuffers->nBuffers = 1;
 pSR->lpBuffers->bufferSize = Length;
 pSR->lpBuffers->BufferAddr[0] = Buffer;

 UINT result;
 result = DriverLINX(pSR);

 if (pSR->lpBuffers) {
 free(pSR->lpBuffers);
 pSR->lpBuffers = 0;
 }

 return result;
}

78 • Programming Counter/Timers with DriverLINX DriverLINX Counter/Timer User’s Guide

Read or Write a Single Buffer Using Visual Basic

Read One Buffer

’ Use this procedure to read one buffer from a
’ specific channel.

Function ReadChannelBuff(dl As DriverLINXSR, ByVal Channel As Integer,
Buffer() As Byte, ByVal Length As Integer)As Integer
 ’ Set up for polled digital input
With dl
 .Req_subsystem = DL_DI
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_NULLEVENT
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 1
 .Sel_buf_size = dl.DLSamples2Bytes(Channel, Length)
 .Sel_chan_format = DL_tINTEGER
 .Sel_chan_N = 1
 .Sel_chan_start = Channel
 .Refresh
 ReadChannelBuff = .Res_result
 End With
 If dl.Res_result = DL_NoErr Then
 Dim dummy As Integer
 dummy = .VBArrayBufferXfer(0, Buffer, DL_BufferToVBArray)
 End If
End Function

Write One Buffer

’ Use this procedure write an integer data
’ array to a specific channel

Function WriteChanBuf(dl As DriverLINXSR, ByVal Channel As Integer,
Buffer() As Byte, ByVal Length As Integer)As Integer
 Dim I As Integer, dummy As Integer
 With dl
 .Req_subsystem = DL_DO
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_NULLEVENT
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 1
 .Sel_buf_size = dl.DLSamples2Bytes(Channel, Length)
 dummy = .VBArrayBufferXfer(0, Buffer, DL_VBArrayToBuffer)
 .Sel_chan_format = DL_tNATIVE
 .Sel_chan_N = 1
 .Sel_chan_start = Channel
 .Refresh
 WriteChanBuf = .Res_result
 End With
End Function

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 79

Using Task-Oriented Functions

DriverLINX’s Task-Oriented Functions
DriverLINX defines several useful task-oriented counter/timer functions that can be
support on most counter/timer hardware. These tasks define common counter/timer
functions in generic terms so they are portable across data-acquisition boards with
similar features. Using one of these tasks makes your application independent of the
particular counter/timer chip a board uses.

Event Counting
Event counting is the simplest counter/timer function. The counter/timer counts
source edges at the Clock input and the application reads the current count value. In
polled mode, the application reads the count value by using Status commands.

Clock

Gate
Output

Event
Counter

Figure 2 Event Counting

Each Am9513 chip has five
counter/timer channels. When
advancing to the next higher
channel, the hardware wraps
around from the last to first
channel.

DriverLINX supports 16-, 32-, and 64-bit wide counters using 1, 2, or 4
counter/timer channels, respectively. When using multiple counter/timer channels,
the application’s Service Request specifies the counter/timer channel where the user
has attached the input source, and DriverLINX then automatically uses consecutive
counter/timer channels for the high-order count.

Starting an Event Counter
To start a software-polled event counter, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> CT POLLED START

80 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Set up the Events Group as follows:

Timing Start Stop

Rate None or
Command

None or
Terminal Count

To set up the Timing Event, see “Specifying the Rate Event for Event Counting” on
page 80. DriverLINX does not need Start or Stop events for event counting, but the
application may optionally specify Command and Terminal Count for Start and Stop
events, respectively. For a Service Request that does not specify data buffers, None
and Command are equivalent for a Start Event as are None and Terminal Count for a
Stop Event.

Specifying the Rate Event for Event Counting
You can determine the first
overflow by physically
connecting a toggled Output
to a digital input and polling
the digital input.

DriverLINX supports repetitive and non-repetitive event counting with several
gating options as shown in the following tables for 16-, 32-, and 64-bit counting.
When repetitive counters reach the maximum count, they wrap around to zero and
continue counting without any indication of overflow. When non-repetitive counters
reach the maximum count, they wrap around to zero and stop with a count of one.

 DriverLINX’s default output
value for all event counters is
active-high terminal count
pulse.

To set up an event counter, select the type of counter from the following tables and
program the Rate Generator properties in a Service Request as specified. Unused or
unspecified properties should be set to zero. Applications can set the Rate
Generator’s Output property to any value. See “Counter Output” on page 55.

Am9513
In the following tables, the Am9513 Mode column refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 81

16-bit
Counting

Am9513
Mode

Channel Mode Clock Gate Pulses

Repetitive
counting
with no
hardware
gating

D N COUNT <source> DISABLED 0

Non-
repetitive
counting
with no
hardware
gating

A N COUNT <source> DISABLED 1

Repetitive
counting
with level
gating

E N COUNT <source> level 0

Non-
repetitive
counting
with level
gating

B N COUNT <source> level 1

Repetitive
counting
with edge
triggering

F N COUNT <source> edge 0

Non-
repetitive
counting
with edge
triggering

C N COUNT <source> edge 1

Repetitive
counting
with
hardware
retriggering

Q N RETRIG
COUNT

<source> level 0

Table 16 Rate Event Properties for 16-bit Event Counting

82 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

32-bit
Counting

Am9513
Mode

Channel Mode Clock Gate Pulses

Repetitive
counting
with no
hardware
gating

D, D N..N+1 COUNT32 <source> DISABLED 0

Non-
repetitive
counting
with no
hardware
gating

D, A N..N+1 COUNT32 <source> DISABLED 1

Repetitive
counting
with level
gating

E, D N..N+1 COUNT32 <source> level 0

Table 17 Rate Event Properties for 32-bit Event Counting

64-bit
Counting

Am951
3 Mode

Channel Mode Clock Gate Pulses

Repetitive
counting
with no
hardware
gating

D, D, D,
D

N..N+3 COUNT64 <source> DISABLED 0

Table 18 Rate Event Properties for 64-bit Event Counting

KPCI-3140
In the following tables, the KPCI-3140 Mode column refers to the hardware mode
that DriverLINX uses to implement the counter function. See “KPCI-3140 Operating
Modes” on page 116 for information about hardware modes.

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 83

16-bit
Counting

KPCI-3140
Mode

Channel Mode Clock Gate Pulses

Repetitive
counting
with no
hardware
gating

2 N COUNT <source> DISABLED 0

Non-
repetitive
counting
with no
hardware
gating

0 N COUNT <source> DISABLED 1

Repetitive
counting
with level
gating

2 N COUNT <source> level 0

Non-
repetitive
counting
with edge
triggering

0 N COUNT <source> edge 1

Table 19 Rate Event Properties for 16-bit Event Counting

32-bit
Counting

KPCI-3140
Mode

Channel Mode Clock Gate Pulses

Repetitive
counting
with no
hardware
gating

2, 2 N..N+1 COUNT32 <source> DISABLED 0

Repetitive
counting
with level
gating

2, 2 N..N+1 COUNT32 <source> level 0

Table 20 Rate Event Properties for 32-bit Event Counting

64-bit
Counting

KPCI-3140
Mode

Channel Mode Clock Gate Pulses

Repetitive
counting
with no
hardware
gating

2, 2, 2, 2 N..N+3 COUNT64 <source> DISABLED 0

Repetitive
counting
with level
gating

2, 2, 2, 2 N..N+3 COUNT64 <source> level 0

Table 21 Rate Event Properties for 64-bit Event Counting

84 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Hardware Setup for Event Counting
The Am9513 supports
counting any source or gate
input as well as the previous
counter’s terminal count and
the internal frequency divider.

For event counting, the application specifies the Logical Channel, N, of the base
counter in the Service Request. The user attaches the count source to the terminal the
application specifies in the Service Request Clock property. Depending on the
counting Mode, the user optionally attaches a triggering or gating signal to the Gate
input.

Channel Clock Gate Output

N count source see tables

N+m any

When using multiple counter/timer channels, the application’s Service Request
specifies the base counter/timer, and DriverLINX then automatically uses
consecutive counter/timer channels for the higher-order count.

Event Counting Using C/C++
//**************************************
// Use this procedure for event counting
//**************************************

UINT StartEventCount (LPServiceRequest pSR, UINT LogicalDevice,
 UINT LogicalChannel, CLOCKS source,
 GATESTATUS gate, UINT clkOut,
 BOOLEAN continuous)
{
 // Set up Service Request to perform task

 // First zero Service Request structure
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 // Then initialize structure size
 DL_SetServiceRequestSize(*pSR);

 // Set up Request Group of Service Request
 pSR->hWnd = GetSafeHwnd();
 pSR->device = LogicalDevice;
 pSR->subsystem = CT;
 pSR->mode = POLLED;
 pSR->operation = START;

 // Set up Timing Event
 pSR->timing.typeEvent = RATEEVENT;
 pSR->timing.u.rateEvent.channel = LogicalChannel;
 pSR->timing.u.rateEvent.mode = COUNT; // or COUNT32 or COUNT64
 pSR->timing.u.rateEvent.clock = source;
 pSR->timing.u.rateEvent.gate = gate;
 pSR->timing.u.rateEvent.period = 0;
 pSR->timing.u.rateEvent.onCount = 0;
 pSR->timing.u.rateEvent.pulses = continuous ? 0 : 1;
 pSR->timing.u.rateEvent.pulses |= clkOut;

 // Call DriverLINX to perform Service Request
 return DriverLINX(pSR);
}

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 85

Event Counting Using Visual Basic
’**************************************
’ Use this procedure for event counting
’**************************************

Function StartEventCount (dl As DriverLINXSR, ByVal LogicalDevice As
Integer, ByVal LogicalChannel As Integer, ByVal source As Integer,
ByVal gate As Integer, ByVal clkOut As Integer, ByVal continuous As
Integer) As Integer
 ’ Set up Service Request to perform task
 With dl
 .Req_device = LogicalDevice
 .Req_subsystem = DL_CT
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_RATEEVENT
 .Evt_Tim_rateChannel = LogicalChannel
 .Evt_Tim_rateMode = DL_COUNT ’ or DL_COUNT32 or DL_COUNT64
 .Evt_Tim_rateClock = source
 .Evt_Tim_rateGate = gate
 .Evt_Tim_ratePeriod = 0
 .Evt_Tim_rateOnCount = 0
 If continuous Then
 .Evt_Tim_ratePulses = 0
 Else
 .Evt_Tim_ratePulses = 1
 End If
 .Evt_Tim_rateOutput = clkOut
 ’ Other events, buffers, channels unneeded
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_N = 0
 .Refresh
 StartEventCount = .Res_result
 End With
End Function

Frequency Measurement
DriverLINX can measure the time-averaged frequency of an unknown frequency
source connected to the Clock input. Frequency measurement requires two or more
counter/timers configured as gating and measurement counters.

Clock

Gate
Output

Gating
Counter

Clock

Gate
Output

Measurement
Counter

Internal
Clock

Unknown
Frequency

User must add this jumper

Figure 3 Frequency Measurement

The measurement counter counts the unknown frequency at its Clock input for a
time interval defined by the gating counter. DriverLINX clocks the gating counter

86 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

from an internal crystal reference oscillator to produce a precise counting duration.
Applications can calculate the unknown input frequency as

frequency
measurementCount

gatingCount clockPeriod
=

×

where measurementCount is the counter value DriverLINX reads from the
measurement counter, gatingCount is the counter value the application specifies for
the measurement interval in the Service Request, and clockPeriod is the duration of
the reference oscillator’s period. See “Converting Between Counts and Time” on
page 58 for how to convert a count to seconds.

It is the application’s
responsibility to select the
gating interval.

The accuracy of the measurement is a function of the unknown input frequency and
the gating interval. As the input frequency decreases, the gating interval should
increase to preserve accuracy. To measure a 0.1 Hz signal, the gating interval should
be approximately 3 minutes.

Usage Notes

Use of this function is highly dependent on hardware features. Some models cannot
stop nor latch counts in this mode so the results may be invalidated by counter
rollover. This means that, on such hardware, a STATUS operation is required to
sample the measurement counter after the first gate pulse but before the next.
Depending on the clock frequency and counter width, the valid sample window can
be very short.

Starting a Frequency Counter
To start a software-polled frequency counter, set up the Service Request Group as
follows:

Device Subsystem Mode Operation

<Logical Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop

Rate None or
Command

None or
Terminal Count

See “Specifying the Rate Event for Frequency Measurements” on page 87 for how to
assign the properties of a Rate Event. DriverLINX does not need Start or Stop events
for frequency measurements, but the application may optionally specify Command
and Terminal Count for Start and Stop events, respectively. For a Service Request
that does not specify buffers, None and Command are equivalent for a Start Event as
are None and Terminal Count for a Stop Event.

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 87

Specifying the Rate Event for Frequency
Measurements

Each Am9513 chip has five
counter/timer channels. When
advancing to the next higher
channel, the hardware wraps
around from the last to first
channel.

The KPCI-3140 chip cannot
wrap around from the last to
first.

DriverLINX supports 16- and 32-bit frequency measurements using multiple
counter/timer channels. DriverLINX uses one counter (on the Am9513) or two
counters (on the KPCI-3140) for the gating counter and one or two counters for the
measurement counter. When using multiple counter/timer channels, the application
specifies the Logical Channel of the first gating counter in the Service Request and
DriverLINX automatically uses consecutive counter/timer channels for the
measurement counter(s). The user may attach the unknown input source to any
Clock or Gate input that DriverLINX allows for the Clock property.

DriverLINX supports repetitive (Pulses property = 0) and non-repetitive (Pulses
property = 1) frequency measurement with several gating options as shown in the
following tables for 16- and 32-bit frequency measurement. Repetitive counters
continually repeat the frequency measurement. Non-repetitive counters measure one
input cycle and then stop measuring.

The user must install a
jumper to perform frequency
measurements. See
“Hardware Setup for
Frequency Measurement” on
page 89.

To set up a frequency measurement, select the type of measurement from the
following tables and program the Rate Generator properties in a Service Request as
specified. The OnCount property specifies the gating interval while the Period
property should be zero. Other unused or unspecified properties should be set to
zero. Applications can set the Rate Generator’s Output property to any value. See
“Counter Output” on page 55.

Am9513
The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware modes that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit
Frequency
Measurement

AM9513
Mode

Channel Mode Clock Gate Pulses

Repetitive
measurement
with no hardware
gating

J, Q N..N+1 FREQ <source> DISABLED 0

Non-repetitive
measurement
with no hardware
gating

G, Q N..N+1 FREQ <source> DISABLED 1

Repetitive
measurement
with edge
triggering

L, Q N..N+1 FREQ <source> EDGE 0

Non-repetitive
measurement
with edge
triggering

I, Q N..N+1 FREQ <source> EDGE 1

Table 22 Rate Event Properties for 16-bit Frequency Measurement

88 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

32-bit
Frequency
Measurement

Am9513
Mode

Channel Mode Clock Gate Pulses

Repetitive
measurement
with no hardware
gating

G, E, D N..N+2 FREQ3
2

<source> DISABLE
D

0

Non-repetitive
measurement
with no hardware
gating

G, E, D N..N+2 FREQ3
2

<source> DISABLE
D

1

Repetitive
measurement
with edge
triggering

I, E, D N..N+2 FREQ3
2

<source> EDGE 0

Non-repetitive
measurement
with edge
triggering

I, E, D N..N+2 FREQ3
2

<source> EDGE 1

Table 23 Rate Event Properties for 32-bit Frequency Measurement

KPCI-3140
The KPCI-3140 Mode column refers to the hardware modes that DriverLINX uses to
implement the counter function. See “KPCI-3140 Operating Modes” on page 116 for
information about hardware modes.

16-bit
Frequency
Measurement

KPCI-3140
Mode

Channel Mode Clock Gate Pulses

Non-repetitive
measurement
with no hardware
gating

2, 1

2

N..N+2 FREQ <source> DISABLED 1

Non-repetitive
measurement
with level gating

2, 1

2

N..N+2 FREQ <source> level 1

Table 24 Rate Event Properties for 16-bit Frequency Measurement

32-bit
Frequency
Measurement

KPCI-3140
Mode

Channel Mode Clock Gate Pulses

Non-repetitive
measurement
with no hardware
gating

2, 1

2, 2

N..N+3 FREQ32 <source> DISABLED 1

Non-repetitive
measurement
with level gating

2, 1

2, 2

N..N+3 FREQ32 <source> level 1

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 89

Table 25 Rate Event Properties for 32-bit Frequency Measurement

Hardware Setup for Frequency Measurement
For frequency measurement, the application specifies the Logical Channel, N, of the
gating counter in the Service Request. The user attaches the unknown frequency
signal to the terminal the application specifies in the Service Request Clock property.
Depending on the counting Mode, the user optionally attaches a signal to the Gate
input.

Before performing a frequency measurement, the user must physically attach a
connection between the Output terminal of the last gating counter, Logical Channel
N, and the Gate terminal of the first measurement counter, Logical Channel N+m.

Channel Clock Gate Output

N (first gating
counter)

 see tables

N+m (first
measurement
counter)

unknown source

N+m+ n (last
measurement
counter)

 any

When using multiple counter/timer channels, the application’s Service Request
specifies the first gating counter/timer, and DriverLINX then automatically uses
consecutive counter/timer channels for next gating counter, if any, and the
measurement counter(s).

90 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Frequency Measurement Using C/C++
//***
// Use this procedure for frequency measurement
//***

UINT StartFrequencyMeasurement (LPServiceRequest pSR,
 UINT LogicalDevice,
 UINT LogicalChannel, CLOCKS source,
 GATESTATUS gate, ULONG measure,
 UINT clkOut,
 BOOLEAN continuous)
{
 // Set up Service Request to perform task

 // First zero Service Request structure
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 // Then initialize structure size
 DL_SetServiceRequestSize(*pSR);

 // Set up Request Group of Service Request
 pSR->hWnd = GetSafeHwnd();
 pSR->device = LogicalDevice;
 pSR->subsystem = CT;
 pSR->mode = POLLED;
 pSR->operation = START;

 // Set up Timing Event
 pSR->timing.typeEvent = RATEEVENT;
 pSR->timing.u.rateEvent.channel = LogicalChannel;
 pSR->timing.u.rateEvent.mode = FREQ; // or FREQ32
 pSR->timing.u.rateEvent.clock = source;
 pSR->timing.u.rateEvent.gate = gate;
 pSR->timing.u.rateEvent.period = 0;
 pSR->timing.u.rateEvent.onCount = measure;
 pSR->timing.u.rateEvent.pulses = continuous ? 0 : 1;
 pSR->timing.u.rateEvent.pulses |= clkOut;

 // Call DriverLINX to perform Service Request
 return DriverLINX(pSR);
}

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 91

Frequency Measurement Using Visual Basic
’***
’ Use this procedure for frequency measurement
’***

Function StartFrequencyMeasurement (dl As DriverLINXSR, ByVal
LogicalDevice As Integer, ByVal LogicalChannel As Integer, ByVal source
As Integer, ByVal gate As Integer, ByVal measure as Long, ByVal clkOut
As Integer, ByVal continuous As Integer) As Integer
 ’ Set up Service Request to perform task
 With dl
 .Req_device = LogicalDevice
 .Req_subsystem = DL_CT
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_RATEEVENT
 .Evt_Tim_rateChannel = LogicalChannel
 .Evt_Tim_rateMode = DL_FREQ ’ or DL_FREQ32
 .Evt_Tim_rateClock = source
 .Evt_Tim_rateGate = gate
 .Evt_Tim_ratePeriod = 0
 .Evt_Tim_rateOnCount = measure
 If continuous Then
 .Evt_Tim_ratePulses = 0
 Else
 .Evt_Tim_ratePulses = 1
 End If
 .Evt_Tim_rateOutput = clkOut
 ’ Other events, buffers, channels unneeded
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_N = 0
 .Refresh
 StartFrequencyMeasurement = .Res_result
 End With
End Function

92 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Interval Measurement
DriverLINX can measure the time interval between two consecutive pulses using
two techniques. In one technique, DriverLINX measures the time delay between two
pulses connected to different counters. In the other technique, DriverLINX measures
the delay between two pulses attached to the input of one counter.

Clock

Gate
Output

Interval
Counter

Clock

Gate
Output

Interval
Counter

Pulse 1

Pulse 2

Internal

Internal

Figure 4 Interval Measurement on Two Channels

Clock

Gate
Output

Interval
Counter

Pulse 1 & 2

Internal

Figure 5 Interval Measurement on One Channel

Usage Notes

Use of this function is highly dependent on hardware features. Some hardware
models support only single-input interval measurement, while other model support
only dual-input interval measurement.

Also, some models cannot stop nor latch counts in this mode so subsequent pulses or
counter rollover may invalidate the results. This means that, on such hardware, a
STATUS operation is required to sample the counters after both pulses but before
counter rollover. Depending on the clock frequency and pulse timing, the valid
sample window can be very short.

Starting an Interval Counter
To start a software-polled interval counter, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> CT POLLED START

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 93

Set up the Events Group as follows:

Timing Start Stop

Rate None or
Command

None or
Terminal Count

See “Specifying the Rate Event for Interval Measurements” on page 93 for how to
assign the properties of a Rate Event. DriverLINX does not need Start or Stop events
for interval measurements, but the application may optionally specify Command and
Terminal Count for Start and Stop events, respectively. For a Service Request that
does not specify buffers, None and Command are equivalent for a Start Event as are
None and Terminal Count for a Stop Event.

Specifying the Rate Event for Interval
Measurements
DriverLINX supports 16-bit interval measurements using 1 or 2 counter/timer
channels. When using a single input, DriverLINX measures the interval between two
consecutive pulse edges connected to the Gate input. When dual inputs for interval
measurements, DriverLINX measures the interval between pulse edges connected to
the Gate inputs of each counter.

• To specify dual input interval measurements, the application specifies
the first Logical Channel as the timing Logical Channel and specifies
the second Logical Channel in the Period property of the Rate Event.

• To specify single input measurements, the application should set the
Period property to the same value as the Channel property.

The Clock property must specify one of the internal clock sources. The internal clock
period times 65536 determines the longest interval between two pulses that the
hardware can measure.

Repetitive counters
continually repeat the interval
measurement. Non-repetitive
counters measure one input
pair and then stop counting.

To set up an interval measurement, program the Rate Generator properties in a
Service Request as specified in the following table. Unused or unspecified properties
should be set to zero. Applications can set the Rate Generator’s Output property to
any value. See “Counter Output” on page 55.

Am9513
The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit Interval
Measurement

AM9513
Mode

Channel Mode Clock Period Pulses

Repetitive (single
input)
measurement

R N INTERVAL <source> N 0

Table 26 Rate Event Properties for 16-bit Interval Measurements

94 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Hardware Setup for Interval Measurements
For interval measurements, the application specifies the Logical Channel(s) of the
input counter(s) in the Service Request. The user attaches the unknown pulse
signal(s) to the Gate inputs of the channel(s) the user specified. The application can
program the counter/timer to measure the delay between the rising or falling edges of
the pulses.

Interval Measurement Using C/C++
//***
// Use this procedure for interval measurements
//***

UINT StartIntervalMeasurement (LPServiceRequest pSR,
 UINT LogicalDevice,
 UINT LogicalChannel1,
 UINT LogicalChannel2, CLOCKS source,
 GATESTATUS gate,
 UINT clkOut)
{
 // Set up Service Request to perform task

 // First zero Service Request structure
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 // Then initialize structure size
 DL_SetServiceRequestSize(*pSR);

 // Set up Request Group of Service Request
 pSR->hWnd = GetSafeHwnd();
 pSR->device = LogicalDevice;
 pSR->subsystem = CT;
 pSR->mode = POLLED;
 pSR->operation = START;

 // Set up Timing Event
 pSR->timing.typeEvent = RATEEVENT;
 pSR->timing.u.rateEvent.channel = LogicalChannel1;
 pSR->timing.u.rateEvent.mode = INTERVAL;
 pSR->timing.u.rateEvent.clock = source;
 pSR->timing.u.rateEvent.gate = gate;
 pSR->timing.u.rateEvent.period = LogicalChannel2;
 pSR->timing.u.rateEvent.onCount = 0;
 pSR->timing.u.rateEvent.pulses =
 LogicalChannel1 == LogicalChannel2 ? 0 : 1;
 pSR->timing.u.rateEvent.pulses |= clkOut;

 // Call DriverLINX to perform Service Request
 return DriverLINX(pSR);
}

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 95

Interval Measurement Using Visual Basic
’***
’ Use this procedure for interval measurements
’***

Function StartIntervalMeasurement (dl As DriverLINXSR, ByVal
LogicalDevice As Integer, ByVal LogicalChannel1 As Integer, ByVal
LogicalChannel2 As Integer, ByVal source As Integer, ByVal gate As
Integer, ByVal clkOut As Integer) As Integer
 ’ Set up Service Request to perform task
 With dl
 .Req_device = LogicalDevice
 .Req_subsystem = DL_CT
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_RATEEVENT
 .Evt_Tim_rateChannel = LogicalChannel1
 .Evt_Tim_rateMode = DL_INTERVAL
 .Evt_Tim_rateClock = source
 .Evt_Tim_rateGate = gate
 .Evt_Tim_ratePeriod = LogicalChannel2
 .Evt_Tim_rateOnCount = 0
 If LogicalChannel1 = LogicalChannel2 Then
 .Evt_Tim_ratePulses = 0
 Else
 .Evt_Tim_ratePulses = 1
 End If
 .Evt_Tim_rateOutput = clkOut
 ’ Other events, buffers, channels unneeded
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_N = 0
 .Refresh
 StartIntervalMeasurement = .Res_result
 End With
End Function

96 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Period and Pulse Width Measurement
DriverLINX can measure the period, or duration, of a single cycle of an unknown
input.

Clock

Gate
Output

Period
Counter

Unknown
Frequency

period

Internal
Frequency

Figure 6 Period Measurement

DriverLINX can measure the duration of the positive or negative half-cycle of an
input.

Clock

Gate
Output

Pulse Width
Counter

Internal
Frequency

Unknown
Frequency

+width

Figure 7 Pulse Width Measurement

Starting an Period or Pulse Width Measurement
To start a software-polled period or pulse width measurement, set up the Service
Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop

Rate None or
Command

None or
Terminal Count

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 97

See “Specifying the Rate Event for Period and Pulse Width Measurements” on page
97 for how to assign the properties of a Rate Event. DriverLINX does not need Start
or Stop events for period and pulse width measurements, but the application may
optionally specify Command and Terminal Count for Start and Stop events,
respectively. For a Start Event, None and Command are equivalent for a Start Event
as are None and Terminal Count for a Stop Event.

Specifying the Rate Event for Period and Pulse
Width Measurements
DriverLINX supports period and pulse width measurements using one counter/timer
channel.

• To measure a period, DriverLINX times the interval between two rising
or falling edges at the Gate input. To specify a period measurement, set
the Gate property of the Rate Event to one of the edge trigger values.

• To measure a pulse width, DriverLINX times the duration of the
positive or negative half-cycle of the signal at the Gate input. To
specify a pulse width measurement, set the Gate property of the Rate
Event to one of the level gating values.

The Clock property must specify one of the internal clock sources. The internal clock
period times maximum counter value determines the longest period or pulse width
that the hardware can measure.

Repetitive counters
continually repeat the interval
measurement.

To set up a period or pulse width measurement, program the Rate Generator
properties in a Service Request as specified in the following table. Unused or
unspecified properties should be set to zero. Applications can set the Rate
Generator’s Output property to any value. See “Counter Output” on page 55.

Am9513
The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit Period
Measurement

AM9513
Mode

Channel Mode Clock Gate Pulses

Repetitive
measurement with
edge triggering

R N PULSEWD INTERNAL EDGE 0

Table 27 Rate Event Properties for 16-bit Period Measurements

16-bit Pulse
Width
Measurement

AM9513
Mode

Channel Mode Clock Gate Pulses

Repetitive
measurement with
level gating

Q N PULSEWD INTERNAL LEVEL 0

Table 28 Rate Event Properties for 16-bit Pulse Width Measurements

98 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

KPCI-3140
The KPCI-3140 Mode column refers to the hardware mode that DriverLINX uses to
implement the counter function. See “KPCI-3140 Operating Modes” on page 116 for
information about hardware modes.

16-bit Pulse
Width
Measurement

KPCI-3140
Mode

Channel Mode Clock Gate Pulses

Repetitive
measurement with
level gating

2 N PULSEWD INTERNAL LEVEL 0

Table 29 Rate Event Properties for 16-bit Pulse Width Measurement

Hardware Setup for Period and Pulse Width
Measurements
For period and pulse width measurements, the application specifies the Logical
Channel of the measurement counter in the Service Request. The user should attach
the unknown signal to the Gate input of the channel specified in the Service Request.
The application can program the counter/timer to measure the delay between the
rising or falling edges of the signal or to measure the duration of the positive or
negative half cycle.

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 99

Period or Pulse Width Measurements Using C/C++
//***
// Use this procedure for period and pulse width measurements
//***

UINT StartPeriodPulseWidthMeasurement (LPServiceRequest pSR,
 UINT LogicalDevice,
 UINT LogicalChannel,
 CLOCKS source,
 GATESTATUS gate,
 UINT clkOut)
{
 // Set up Service Request to perform task

 // First zero Service Request structure
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 // Then initialize structure size
 DL_SetServiceRequestSize(*pSR);

 // Set up Request Group of Service Request
 pSR->hWnd = GetSafeHwnd();
 pSR->device = LogicalDevice;
 pSR->subsystem = CT;
 pSR->mode = POLLED;
 pSR->operation = START;

 // Set up Timing Event
 pSR->timing.typeEvent = RATEEVENT;
 pSR->timing.u.rateEvent.channel = LogicalChannel;
 pSR->timing.u.rateEvent.mode = PULSEWD;
 pSR->timing.u.rateEvent.clock = source;
 pSR->timing.u.rateEvent.gate = gate;
 pSR->timing.u.rateEvent.period = 0;
 pSR->timing.u.rateEvent.onCount = 0;
 pSR->timing.u.rateEvent.pulses = 0;
 pSR->timing.u.rateEvent.pulses |= clkOut;

 // Call DriverLINX to perform Service Request
 return DriverLINX(pSR);
}

100 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Period or Pulse Width Measurement Using Visual
Basic
’**
’ Use this procedure for period or pulse width measurements
’**
Function StartPeriodPulseWidthMeasurement (dl As DriverLINXSR, ByVal
LogicalDevice As Integer, ByVal LogicalChannel As Integer, ByVal source
As Integer, ByVal gate As Integer, ByVal clkOut As Integer)As Integer
 ’ Set up Service Request to perform task
 With dl
 .Req_device = LogicalDevice
 .Req_subsystem = DL_CT
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_RATEEVENT
 .Evt_Tim_rateChannel = LogicalChannel
 .Evt_Tim_rateMode = DL_PULSEWD
 .Evt_Tim_rateClock = source
 .Evt_Tim_rateGate = gate
 .Evt_Tim_ratePeriod = 0
 .Evt_Tim_rateOnCount = 0
 .Evt_Tim_ratePulses = 0
 .Evt_Tim_rateOutput = clkOut
 ’ Other events, buffers, channels unneeded
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_N = 0
 .Refresh
 StartPeriodPulseWidthMeasurement = .Res_result
 End With
End Function

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 101

Pulse and Strobe Generation
DriverLINX can generate a variety of single pulses, delayed pulses, and strobes or
one-shots. DriverLINX uses two parameters to characterize delayed pulses—delay
time and pulse duration. DriverLINX uses just one parameter, delay time, to
characterize strobes or one-shots.

Clock

Gate
Output

Internal
Frequency

Optional edge
or level gate

delay

Strobe
Generator

Figure 8 Strobe or One-shot Generation

Clock

Gate
Output

Pulse
Generator

Internal
Frequency

Optional edge
or level gate

delay

duration

Figure 9 Pulse Generation

Starting Pulse and Strobe Generation
To start a software-polled pulse or strobe output, set up the Request Group as
follows:

Device Subsystem Mode Operation

<Logical Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop

Rate None or
Command

None or
Terminal Count

See “Specifying the Rate Event for Pulses and Strobes” on page 102 for how to
assign the properties of a Rate Event. DriverLINX does not need Start or Stop events
for pulses and strobes, but the application may optionally specify Command and
Terminal Count for Start and Stop events, respectively. For a Start Event, None and

102 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Command are equivalent for a Start Event as are None and Terminal Count for a
Stop Event.

Specifying the Rate Event for Pulses and Strobes
DriverLINX supports 16-bit pulse and strobe generation using one counter/timer
channel. For strobe or one-shot outputs, the application specifies the delay preceding
the strobe pulse using the Period property of the Rate Event. For delayed pulses, the
application specifies the delay preceding the pulse using the Period property and the
duration of the pulse using the OnCount property of the Rate Event.

Generally, the Clock property should specify one of the internal clock sources, but
you may use any allowed source for the Clock input. The clock period times 65536
determines the longest delay and pulse width that the hardware can generate.

Repetitive counters support
hardware retriggering. Non-
repetitive generate a single
pulse and stop.

To set up strobes and pulses, program the Rate Generator properties in a Service
Request as specified in the following table. Unused or unspecified properties should
be set to zero. Applications can set the Rate Generator’s Output property to any
value. See “Counter Output” on page 55. By default, strobes generate an active high
pulse for 1 clock period after the delay while pulses toggle from low to high after the
delay.

AM9513
The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit
Strobes

AM9513
Mode

Mode Period OnCount Gate Pulses

Software-
triggered
strobe with no
hardware
gating

A ONESHOT delay 0 DISABLED 1

Software-
triggered
strobe with
level gating

B ONESHOT delay 0 LEVEL 1

Hardware-
triggered
Strobe

C ONESHOT delay 0 EDGE 1

Non-
retriggerable
one-shot

F ONESHOT delay 0 EDGE 0

Software-
triggered
strobe with
level gating
and hardware
retriggering

N RETRIG
ONESHOT

delay 0 LEVEL 1

Software-
triggered
strobe with
edge gating

O RETRIG
ONESHOT

delay 0 EDGE 1

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 103

16-bit
Strobes

AM9513
Mode

Mode Period OnCount Gate Pulses

and hardware
retriggering

Retriggerable
one-shot

R RETRIG
ONESHOT

delay 0 EDGE 0

Table 30 Rate Event Properties for Strobes

16-bit
Pulses

AM9513
Mode

Mode Period OnCount Gate Pulses

Software-
triggered
delayed pulse
one-shot

G PULSEGEN delay duration DISABLED 1

Software-
triggered
delayed pulse
one-shot with
hardware
gating

H PULSEGEN delay duration LEVEL 1

Hardware-
triggered
delayed pulse
strobe

I PULSEGEN delay duration EDGE 1

Hardware-
triggered
delayed pulse
one-shot

L PULSEGEN delay duration EDGE 0

Delayed pulse
one-shot with
level-selected
reloading

S FSKGEN high
delay

low delay DISABLED 1

Table 31 Rate Event Properties for Pulses

104 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

KPCI-3140
The KPCI-3140 Mode column refers to the hardware mode that DriverLINX uses to
implement the counter function. See “KPCI-3140 Operating Modes” on page 116 for
information about hardware modes.

16-bit
Strobes

KPCI-3140
Mode

Mode Period OnCount Gate Pulses

Software-
triggered
strobe with no
hardware
gating

0 ONESHOT delay 0 DISABLED 1

Hardware-
triggered
Strobe

0 ONESHOT delay 0 EDGE 1

Non-
retriggerable
one-shot

1 ONESHOT delay 0 EDGE 0

Table 32 Rate Event Properties for Strobes

16-bit
Pulses

KPCI-3140
Mode

Mode Period OnCount Gate Pulses

Software-
triggered
delayed pulse
one-shot

0 PULSEGEN delay duration DISABLED 1

Hardware-
triggered
delayed pulse
strobe

0 PULSEGEN delay duration EDGE 1

Hardware-
triggered
delayed pulse
one-shot

1 PULSEGEN delay duration EDGE 0

Table 33 Rate Event Properties for Pulses

Hardware Setup for Pulses and Strobes
For pulse and strobe generation, the application specifies the Logical Channel of the
pulse counter in the Service Request. The user should attach any gating or triggering
signals to the Gate input of the channel specified in the Service Request. The strobe
or pulse output appears at the Output terminal of counter/timer.

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 105

Pulse and Strobe Generation Using C/C++
//**
// Use this procedure to generate pulses and strobes
//**

UINT StartPulseStrobe (LPServiceRequest pSR,
 UINT LogicalDevice,
 UINT LogicalChannel,
 UINT delay,
 UINT duration,
 BOOLEAN retrig,
 UINT pulses,
 CLOCKS source,
 GATESTATUS gate,
 UINT clkOut)
{
 // Set up Service Request to perform task

 // First zero Service Request structure
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 // Then initialize structure size
 DL_SetServiceRequestSize(*pSR);

 // Set up Request Group of Service Request
 pSR->hWnd = GetSafeHwnd();
 pSR->device = LogicalDevice;
 pSR->subsystem = CT;
 pSR->mode = POLLED;
 pSR->operation = START;

 // Set up Timing Event
 pSR->timing.typeEvent = RATEEVENT;
 pSR->timing.u.rateEvent.channel = LogicalChannel;
 if (duration != 0)
 pSR->timing.u.rateEvent.mode = PULSEGEN;
 else
 pSR->timing.u.rateEvent.mode = retrig ? RETRIGONESHOT : ONESHOT;
 pSR->timing.u.rateEvent.clock = source;
 pSR->timing.u.rateEvent.gate = gate;
 pSR->timing.u.rateEvent.period = delay;
 pSR->timing.u.rateEvent.onCount = duration;
 pSR->timing.u.rateEvent.pulses = pulses;
 pSR->timing.u.rateEvent.pulses |= clkOut;

 // Call DriverLINX to perform Service Request
 return DriverLINX(pSR);
}

106 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Pulse and Strobe Generation Using Visual Basic
’**
’ Use this procedure to generate pulses and strobes
’**

Function StartPulseStrobe (dl As DriverLINXSR, ByVal LogicalDevice As
Integer, ByVal LogicalChannel As Integer, ByVal delay As Integer, ByVal
duration As Integer, ByVal retrig As Integer, ByVal pulses As Integer,
ByVal source As Integer, ByVal gate As Integer, ByVal clkOut As
Integer)As Integer
 ’ Set up Service Request to perform task
 With dl
 .Req_device = LogicalDevice
 .Req_subsystem = DL_CT
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_RATEEVENT
 .Evt_Tim_rateChannel = LogicalChannel
 If duration <> 0 Then
 .Evt_Tim_rateMode = DL_PULSEGEN
 Else
 If retrig <> 0 Then
 .Evt_Tim_rateMode = DL_RETRIGONESHOT
 Else
 .Evt_Tim_rateMode = DL_ONESHOT
 End If
 End If
 .Evt_Tim_rateClock = source
 .Evt_Tim_rateGate = gate
 .Evt_Tim_ratePeriod = delay
 .Evt_Tim_rateOnCount = duration
 .Evt_Tim_ratePulses = pulses
 .Evt_Tim_rateOutput = clkOut
 ’ Other events, buffers, channels unneeded
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_N = 0
 .Refresh
 StartPulseStrobe = .Res_result
 End With
End Function

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 107

Frequency Generation
DriverLINX can generate a variety of pulse trains, variable duty cycle waveforms,
square waves, and frequency-shift keyed waveforms.

Clock

Gate
Output

Frequency
Generator

Internal
Frequency

Optional edge
or level gate

Figure 10 Frequency Generation

Starting Frequency Generation
To start frequency output, set up the Request Group as follows:

Device Subsystem Mode Operation

<Logical Device> CT POLLED START

Set up the Events Group as follows:

Timing Start Stop

Rate None or
Command

None or
Terminal Count

See “Specifying the Rate Event for Frequency Generation” on page 107 for how to
assign the properties of a Rate Event. DriverLINX does not need Start or Stop events
for frequency generation, but the application may optionally specify Command and
Terminal Count for Start and Stop events, respectively. For a Start Event, None or
Command are equivalent, as are None or Terminal Count for a Stop Event.

Specifying the Rate Event for Frequency
Generation
DriverLINX supports 16-bit frequency generation using one counter/timer channel.

The Clock property must specify one of the internal clock sources. The internal clock
period times 65536 determines the longest period that the hardware can generate.

To set up a frequency generation, program the Rate Generator properties in a
Service Request as specified in the following table. Unused or unspecified properties
should be set to zero. Applications can set the Rate Generator’s Output property to
any value. See “Counter Output” on page 55.

108 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Am9513
The Am9513 Mode column in the following tables refers to the Advanced Micro
Devices’ letter designation for the hardware mode that DriverLINX uses to
implement the counter function. See “Am9513 Operating Modes” on page 117 for
information about hardware modes.

16-bit
Frequency

AM9513
Mode

Mode Period OnCount Gate Pulses

Rate
generator
with no
hardware
gating

D RATEGEN period 0 DISABLED 0

Rate
generator
with level
gating

E RATEGEN period 0 LEVEL 0

Rate
generator
with edge
gating

X RATEGEN period 0 EDGE 0

Rate
generator
with
synchronizati
on

Q RETRIG
RATEGEN

period 0 LEVEL 0

Square wave
generator
with no
hardware
gating

D SQWAVE period 0 DISABLED 0

Square wave
generator
with level
gating

E SQWAVE period 0 LEVEL 0

Square wave
generator
with edge
gating

X SQWAVE period 0 EDGE 0

Square wave
generator
with
synchronizati
on

Q RETRIG
SQWAVE

period 0 LEVEL 0

Frequency
divider with
no hardware
gating

D DIVIDER divisor 0 DISABLED 0

Frequency
divider with
level gating

E DIVIDER divisor 0 LEVEL 0

Frequency
divider with
edge gating

X DIVIDER divisor 0 EDGE 0

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 109

16-bit
Frequency

AM9513
Mode

Mode Period OnCount Gate Pulses

Variable duty
cycle rate
generator
with no
hardware
gating

J VDCGEN period active high
duration

DISABLED 0

Variable duty
cycle rate
generator
with level
gating

K VDCGEN delay duration LEVEL 0

Frequency-
shift keying

V FSKGEN delay duration DISABLED 0

Table 34 Rate Event Properties for Frequency Generation

KPCI-3140
The KPCI-3140 Mode column refers to the hardware mode that DriverLINX uses to
implement the counter function. See “KPCI-3140 Operating Modes” on page 116 for
information about hardware modes.

16-bit
Frequency

KPCI-3140
Mode

Mode Period OnCount Gate Pulses

Rate
generator
with no
hardware
gating

2 RATEGEN period 0 DISABLED 0

Rate
generator
with level
gating

2 RATEGEN period 0 LEVEL 0

Square wave
generator
with no
hardware
gating

2 SQWAVE period 0 DISABLED 0

Square wave
generator
with level
gating

2 SQWAVE period 0 LEVEL 0

Frequency
divider with
no hardware
gating

2 DIVIDER divisor 0 DISABLED 0

Frequency
divider with
level gating

2 DIVIDER divisor 0 LEVEL 0

110 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

16-bit
Frequency

KPCI-3140
Mode

Mode Period OnCount Gate Pulses

Variable duty
cycle rate
generator
with no
hardware
gating

2 VDCGEN period active high
duration

DISABLED 0

Variable duty
cycle rate
generator
with level
gating

2 VDCGEN delay duration LEVEL 0

Table 35 Rate Event Properties for Frequency Generation

Hardware Setup for Frequency Generation
For frequency generation, the application specifies the Logical Channel of the
frequency counter in the Service Request. The user should attach any gating or
triggering signals to the Gate input of the channel specified in the Service Request.
The frequency output appears at the Output terminal of counter/timer.

DriverLINX Counter/Timer User’s Guide Using Task-Oriented Functions • 111

Frequency Generation Using C/C++
//**
// Use this procedure for frequency generation
//**

UINT StartFrequency (LPServiceRequest pSR,
 UINT LogicalDevice,
 UINT LogicalChannel,
 GENERATORS mode,
 UINT period,
 UINT onCount,
 CLOCKS source,
 GATESTATUS gate,
 UINT clkOut)
{
 // Set up Service Request to perform task

 // First zero Service Request structure
 memset(pSR, 0, sizeof(DL_SERVICEREQUEST));
 // Then initialize structure size
 DL_SetServiceRequestSize(*pSR);

 // Set up Request Group of Service Request
 pSR->hWnd = GetSafeHwnd();
 pSR->device = LogicalDevice;
 pSR->subsystem = CT;
 pSR->mode = POLLED;
 pSR->operation = START;

 // Set up Timing Event
 pSR->timing.typeEvent = RATEEVENT;
 pSR->timing.u.rateEvent.channel = LogicalChannel;
 pSR->timing.u.rateEvent.mode = mode;
 pSR->timing.u.rateEvent.clock = source;
 pSR->timing.u.rateEvent.gate = gate;
 pSR->timing.u.rateEvent.period = period;
 pSR->timing.u.rateEvent.onCount = onCount;
 pSR->timing.u.rateEvent.pulses = 0;
 pSR->timing.u.rateEvent.pulses |= clkOut;

 // Call DriverLINX to perform Service Request
 return DriverLINX(pSR);
}

112 • Using Task-Oriented Functions DriverLINX Counter/Timer User’s Guide

Frequency Generation Using Visual Basic
’**
’ Use this procedure frequency generation
’**
Function StartFrequency (dl As DriverLINXSR, ByVal LogicalDevice As
Integer, ByVal LogicalChannel As Integer, ByVal mode As Integer, ByVal
period As Integer, ByVal onCount As Integer, ByVal source As Integer,
ByVal gate As Integer, ByVal clkOut As Integer)As Integer
 ’ Set up Service Request to perform task
 With dl
 .Req_device = LogicalDevice
 .Req_subsystem = DL_CT
 .Req_mode = DL_POLLED
 .Req_op = DL_START
 .Evt_Tim_type = DL_RATEEVENT
 .Evt_Tim_rateChannel = LogicalChannel
 .Evt_Tim_rateMode = mode
 .Evt_Tim_rateClock = source
 .Evt_Tim_rateGate = gate
 .Evt_Tim_ratePeriod = period
 .Evt_Tim_rateOnCount = onCount
 .Evt_Tim_ratePulses = 0
 .Evt_Tim_rateOutput = clkOut
 ’ Other events, buffers, channels unneeded
 .Evt_Str_type = DL_NULLEVENT
 .Evt_Stp_type = DL_NULLEVENT
 .Sel_buf_N = 0
 .Sel_chan_N = 0
 .Refresh
 StartFrequency = .Res_result
 End With
End Function

DriverLINX Counter/Timer User’s Guide Hardware Reference • 113

Hardware Reference

8254 Operating Modes
This section describes the operating modes of the Intel 8254 Programmable Interval
Timer and how to set up a DriverLINX Service Request to implement each of the
8254’s modes. This information will help you to understand the 8254’s hardware
capabilities and to adopt legacy applications that use the 8254 to DriverLINX.

The 8254 is a simple chip. Each chip has three independently counter/timers that
operate in one of six basic operating modes. Each counter/timer has only one single-
polarity clock source, a single output mode (depending on the operating mode), and a
single gate input mode (also, depending on the operating mode). Data-acquisition
boards that use 8254 chips may expand the capabilities of the counter/timer with
features such as off-chip clock source selection and gate modes, or reduce its
capabilities by eliminating some external connections.

The following table shows how the 8254’s hardware features and terminology map
onto DriverLINX’s counter/timer model.

Intel 8254 DriverLINX

Operating modes (0..5) Mode, Gate, Pulses fields

Gating control Gate field

Count source selection (off-chip) Clock field

Count register Period or (Period - onCount) value

Count once/repetitively Pulses field

Binary/BCD counting binary counting only

Intel and other 8254 manufacturers generally designate the 8254’s six basic
operating modes by the numbers 0 through 5. DriverLINX supports all these modes
using combinations of the Mode, Gate, and Pulses fields. The following sections
describe the 8254’s basic modes using DriverLINX terminology.

114 • Hardware Reference DriverLINX Counter/Timer User’s Guide

Operating Mode Descriptions

Mode 0: Interrupt on Terminal Count
Mode 0 provides a software-triggered strobe with level gating. The application must
issue a START (arm) command to the counter before it can begin counting. Once
armed, the counter counts all Clock edges that occur while the Gate is high and
disregards Clock edges that occur while the Gate is low. This feature permits the
Gate to turn the count process on and off.

After receiving a START command, the counter sets its output low and counts to
TC. Upon reaching TC, the counter sets its output high and automatically disarms
itself inhibiting further counting. Counting resumes upon receipt of a STOP followed
by a new START command.

Mode Period onCount Pulses Gate

ONESHOT value 0 1 HiLevel

Mode 1:Hardware-retriggerable One-Shot
Mode 1 is similar to Mode 0 except that an armed counter does not begin counting
until it detects a rising gate edge. The gate level does not modulate counting.

The application must START (arm) the counter before application of the triggering
gate edge. A disarmed counter ignores gate edges. After receiving a START
command, the counter sets its output high until the first rising gate edge. It then set
its output low and counts to TC. Upon reaching TC, the counter sets its output high,
reloads the Period value and disarms until the next rising gate edge.

All rising gate edges, including the first gate edge used to start the counter, retrigger
the count process. On the first Clock edge after the retriggering gate edge, the
counter loads the Period value. Counting resumes on the second Clock edge after a
retrigger. Irrespective of the gate level, the counter counts all Clock edges after
receiving the triggering gate edge until TC.

To initiate a new counting cycle, apply a STOP command followed by a new
START command and a new gate edge.

Mode Period onCount Pulses Gate

RETRIGONESHOT value 0 1 HiEdge

Mode 2: Rate Generator
Mode 2 produces a periodic output pulse with level gating. The application must
issue a START (arm) command to the counter before it can begin counting. Once
armed, the counter counts all Clock edges that occur while the Gate is high and
disregards Clock edges that occur while the Gate is low. When the Gate rises, the
counter resets the count and resumes counting. This feature permits the Gate to turn
the count process on and off, and to synchronize the count with an external signal.

After receiving a START command, the counter sets its output high and counts to
TC. Upon reaching TC, the counter sets its output low for one clock pulse and the

DriverLINX Counter/Timer User’s Guide Hardware Reference • 115

reloads the counter. Counting continues until the application sends a STOP
command.

Mode Period onCount Pulses Gate

RATEGEN value 0 0 HiLevel

Mode 3: Square Wave
Mode 3 is identical to Mode 2 except that the duty cycle of the output is 50% for
even Periods and about 50% for odd Periods. The initial output level is high. The
counter toggles the output at TC / 2 and again at TC. Counting continues until the
application sends a STOP command.

Mode Period onCount Pulses Gate

SQWAVE value 0 0 HiLevel

Mode 4: Software-triggered Strobe
Mode 4 is similar to Mode 0 except that the duty cycle and phase of the output. The
output is initially high and goes low for one clock cycle at TC.

The application must issue a START (arm) command to the counter before it can
begin counting. Once armed, the counter counts all Clock edges that occur while the
Gate is high and disregards Clock edges that occur while the Gate is low. This
feature permits the Gate to turn the count process on and off.

After receiving a START command, the counter sets its output high and counts to
TC. Upon reaching TC, the counter sets its output low for one clock pulse. It then
automatically disarms itself inhibiting further counting. Counting resumes upon
receipt of a STOP followed by a new START command.

Mode Period onCount Pulses Gate

RETRIGONESHOT value 0 1 HiLevel

Mode 5: Hardware-triggered Strobe

Mode 5 is identical to Mode 4 except that the Gate input triggers counting instead of
modulating counting.

The application must arm the counter with a START command before the
application of a rising gate edge; the counter ignores gate edges in the disarmed state.
The counter starts counting on the first Clock edge after the rising gate edge and
continues until TC. At TC, the counter reloads the Period value and automatically
rearms itself. Counting resumes at the next rising gate edge.

Mode Period onCount Pulses Gate

ONESHOT value 0 1 HiEdge

116 • Hardware Reference DriverLINX Counter/Timer User’s Guide

KPCI-3140 Operating Modes
This section describes the operating modes of the Keithley KPCI-3140 proprietary
counter/timer chip and how to set up a DriverLINX Service Request to implement
each of the KPCI-3140’s modes. This information will help you to understand the
KPCI-3140’s hardware capabilities.

The KPCI-3140 counter/timer chip is a simple chip. Each chip has four 16-bit
counter/timers available for user functions. It also has two 24-bit counter/timers but
they can only be used for pacing. The user counter/timers can operate in one of three
basic operating modes. The mode determines whether the gate is edge or level
sensitive.

The following table shows how the KPCI-3140’s hardware features and terminology
map onto DriverLINX’s counter/timer model.

KPCI-3140 CT Chip DriverLINX

Operating modes (0..2) Mode, Pulses fields

Gating control Gate field

Count source selection Clock field

Load register Period field

Pulse register Period - onCount field

Count once/repetitively Pulses field

DriverLINX supports the chip’s there operating modes using combinations of the
Mode, Gate, and Pulses fields. The following sections describe the basic modes
using DriverLINX terminology.

Operating Mode Descriptions

Mode 0: Non-retriggerable One-shot
In non-retriggerable one-shot mode, DriverLINX arms the counter at the start of the
task. If a gate edge is specified, the counter waits for a rising or falling edge trigger
on the external gate input, otherwise DriverLINX triggers the counter via software.
When the trigger occurs, the counter begins incrementing. When the counter reaches
the value specified by Period - onCount, it activates its output for at least one count.
The output stays active until the counter reaches the terminal count specified in the
Period field. The counter then deactivates its output and stops.

Mode 0 is identical to mode 1 except that mode 0 ignores all triggers after the first
trigger.

Mode Period onCount Pulses Gate

PULSEGEN delay duration 1 edge

PULSEGEN delay duration 1 DISABLED

ONESHOT period 0 1 edge

ONESHOT period 0 1 DISABLED

DriverLINX Counter/Timer User’s Guide Hardware Reference • 117

Mode 1: Retriggerable One-shot
In retriggerable one-shot mode, DriverLINX arms the counter at the start of the task.
If a gate edge is specified, the counter waits for a rising or falling edge trigger on the
external gate input, otherwise DriverLINX triggers the counter via software. When
the trigger occurs, the counter begins incrementing. When the counter reaches the
value specified by Period - onCount, it activates its output for at least one count. The
output stays active until the counter reaches the terminal count specified in the
Period field. The counter then deactivates its output and stops. A trigger while the
counter is stopped restarts the cycle.

Mode 0 is identical to mode 1 except that mode 0 ignores all triggers after the first
trigger.

Mode Period onCount Pulses Gate

PULSEGEN delay duration 0 edge

PULSEGEN delay duration 0 DISABLED

ONESHOT value 0 0 edge

ONESHOT value 0 0 DISABLED

Mode 2: Continuous Increment
In continuous increment mode, DriverLINX arms and starts the counter. When the
counter reaches the value specified by Period - onCount, it activates its output for at
least one count. The output stays active until the counter reaches to the terminal
count. The output stays active until the counter reaches the terminal count specified
in the Period field. The counter then deactivates its output, reloads and continues
counting. The counter pauses during counting when an enabled gate signal is not at
the specified level.

Mode Period onCount Pulses Gate

VDCGEN period on count 0 level

RATEGEN period 0 0 level

SQWAVE period 0 0 level

DIVIDER divisor 0 0 level

VDCGEN period on count 0 DISABLED

RATEGEN period 0 0 DISABLED

SQWAVE period 0 0 DISABLED

DIVIDER divisor 0 0 DISABLED

Am9513 Operating Modes
This section describes the operating modes of the Am9513 System Timing
Controller and how to set up a DriverLINX Service Request to implement each of
the Am9513’s modes. This information will help you to understand the Am9513’s
hardware capabilities and to adopt legacy applications that use the Am9513 to
DriverLINX.

118 • Hardware Reference DriverLINX Counter/Timer User’s Guide

The Am9513 is a complex chip. Each Am9513 counter/timer supports about 12,160
parameter combinations. Users can select from 19 basic operating modes, 16 clock
(source) inputs, 2 clock polarities, 2 counting types, 2 counting directions, and 5
output options. If you interconnect counter/timers, the number of possible
combinations soars to about 2×1020. Clearly some organization is needed.

The following table shows how the Am9513’s hardware features and terminology
map onto DriverLINX’s counter/timer model.

Am9513 DriverLINX

Operating modes (A..X) Mode, Gate, Pulses fields

Gating control Gate field

Source edge polarity of Clock field

Count source selection Clock field

Output control Output bits of Pulses field

Load register Period or (Period - onCount) value

Hold register onCount value or STATUS result

Counting direction based on Mode

Count once/repetitively Pulses field

Binary/BCD counting binary counting only

Advanced Micro Devices and vendors of Am9513-based boards generally designate
the Am9513’s 19 basic operating modes by capital letters, A through X. DriverLINX
supports all these modes using combinations of the Mode, Gate, and Pulses fields.
The following sections describe the Am9513’s basic modes using DriverLINX
terminology.

Operating Mode Descriptions

Mode A: Software-Triggered Strobe with No Hardware
Gating

Mode A is one of the simplest operating modes. The counter counts Clock edges
when it receives a START (arm) command. On each TC, the counter reloads the
Period value and automatically disarms itself. Counting resumes when the
application issues a STOP followed by a new START command.

Mode Period onCount Pulses Gate

ONESHOT value 0 1 DISABLED

Mode B: Software-Triggered Strobe with Level Gating
Mode B is identical to Mode A except that the counter only counts Clock edges
when the programmed gate input is active. The application must arm the counter
with a START command before counting can occur. Once armed, the counter counts
all Clock edges that occur while the gate is active; the counter disregards those
edges that occur while the gate is inactive. This feature permits the gate to turn the

DriverLINX Counter/Timer User’s Guide Hardware Reference • 119

count process on and off. On each TC, the counter reloads the Period value and
automatically disarms itself, inhibiting further counting until the application issues a
STOP followed by a new START command.

Mode Period onCount Pulses Gate

ONESHOT value 0 1 level

Mode C: Hardware-triggered Strobe
Mode C is identical to Mode A except that an armed counter does not begin counting
until it detects a gate edge at the Gate input.

The application must arm the counter with a START command before the
application of a triggering gate edge; the counter ignores gate edges in the disarmed
state. The counter starts counting on the first Clock edge after the triggering gate
edge and continues until TC. At TC, the counter reloads the Period value and
automatically disarms itself. Counting then remains inhibited until the application
applies a STOP followed by a new START command and the counter then detects a
new gate (in that order).

Note that after application of a triggering gate edge, the counter disregards the Gate
input for the remainder of the count cycle. This process differs from that of Mode B
where the Gate can be modulated throughout the count cycle to stop and start the
counter.

Mode Period onCount Pulses Gate

ONESHOT value 0 1 edge

Mode D: Rate Generator with No Hardware Gating

Applications typically use Mode D for frequency generation. In this mode the Gate
input does not affect counter operation. Once STARTed, the counter counts to TC
repetitively. On each TC the counter reloads the Period value; hence the Period
value determines the time between TCs.

Mode Period onCount Pulses Gate

RATEGEN value 0 0 DISABLED

SQWAVE value 0 0 DISABLED

RATEGEN and SQWAVE both use Mode D, but the default output for RATEGEN
is active high TC and for SQWAVE is TC toggled.

Mode E: Rate Generator with Level Gating

Mode E is identical to Mode D except that the counter only counts those Clock
edges that occur while the Gate input is active. This feature allows hardware to
enable and disable the counting process.

120 • Hardware Reference DriverLINX Counter/Timer User’s Guide

Mode Period onCount Pulses Gate

RATEGEN value 0 0 level

SQWAVE value 0 0 level

RATEGEN and SQWAVE both use Mode E, but the default output for RATEGEN
is active high TC and for SQWAVE is TC toggled.

Mode F: Non-Retriggerable One-shot
Mode F provides a non-retriggerable, one-shot timing function. The application must
START (arm) the counter before it can function. Application of a gate edge to the
armed counter enables counting. When the counter reaches TC, it reloads itself from
the Period value. The counter then stops counting awaiting a new gate edge.

Note that unlike Mode C, Mode F does not need a new START command after TC,
but it does require a new gate edge. After application of a triggering gate edge, the
counter disregards the Gate input until TC.

Mode Period onCount Pulses Gate

ONESHOT value 0 0 edge

Mode G: Software-Triggered, Delayed Pulse One-shot

In Mode G, the Gate does not affect the counter’s operation. Once STARTed
(armed), the counter counts to TC twice and then automatically disarms itself. For
most applications, the counter initially loads the Period value. Upon counting to the
first TC, the counter will reload itself from the onCount value. Counting proceeds
until the second TC when the counter reloads itself from the Period value and
automatically disarms itself, inhibiting further counting. Applications can resume
counting by issuing a STOP followed by a new START command.

Applications can generate a software-triggered, delayed pulse one-shot by specifying
the TC toggled output mode. The Period value controls the delay from the START
command until the output pulse starts. The onCount value controls the pulse
duration.

Mode Period onCount Pulses Gate

PULSEGEN value value 1 DISABLED

Mode H: Software-Triggered, Delayed Pulse One-shot with
Hardware Gating
Mode H is identical to Mode G except the Gate input qualifies which Clock edges
the counter counts. The application must START (arm) the counter for counting to
take place. Once armed, the counter counts all Clock edges that occur while the
Gate is active and disregards those Clock edges that occur while the Gate is
inactive. This permits the Gate to turn the count process on and off.

DriverLINX Counter/Timer User’s Guide Hardware Reference • 121

As with Mode G, the counter reloads using the onCount value on the first TC and
reloads using the Period value and disarms on the second TC. Mode H allows the
Gate to control the extension of both the initial output delay time (Period) and the
pulse width (onCount).

Mode Period onCount Pulses Gate

PULSEGEN value value 1 level

Mode I: Hardware-triggered, Delayed Pulse Strobe
Mode I is identical to Mode G except that the counter does not begin counting until a
STARTed (armed) counter detects a gate edge. The application must START the
counter before application of the triggering gate edge. The counter disregards gate
edges when disarmed. An armed counter starts counting on the first Clock edge
after the triggering gate edge. Counting then proceeds in the same manner as in
Mode G. After the second TC, the counter disarms itself. To restart counting, issue a
STOP followed by a START command and a gate edge (in that order).

Note that after application of a triggering gate edge, the counter disregards the Gate
input until the second TC. This sequence differs from Mode H where modulating the
Gate throughout the count cycle stops and starts the counter.

Mode Period onCount Pulses Gate

PULSEGEN value value 1 edge

Mode J: Variable Duty Cycle Rate Generator with No
Hardware Gating
Mode J finds its greatest use in frequency generation with variable duty cycle
requirements. Once STARTed (armed), the counter counts continuously until it
receives a STOP command. On the first TC, the counter will reload using the
onCount value. Counting then proceeds until the second TC when the counter loads
the (Period - onCount) value. Counting continues with the reload value alternating
on each TC until the counter receives a STOP command.

Generate a variable duty cycle output by specifying one of the TC toggled output
modes. The Period and onCount values then directly control the output duty cycle.
For high resolution, use relatively high count values.

Mode Period onCount Pulses Gate

VDCGEN value value 0 disabled

Mode K: Variable Duty Cycle Rate Generator with Level
Gating

Mode K is identical to Mode J except that the counter only counts Clock edges
when the Gate is active. The application must START (arm) the counter for
counting to occur. Once armed, the counter counts all Clock edges that occur while

122 • Hardware Reference DriverLINX Counter/Timer User’s Guide

the Gate is active and disregards those Clock edges that occur while the Gate is
inactive. This feature permits the Gate to turn the count process on and off.

As during Mode J operation, the counter alternates the reload source on each TC,
starting with the onCount value on the first TC after any START command. Use
one of the TC toggled output modes to allow the Gate to modulate the duty cycle of
the output waveform during both the high and low portions.

Mode Period onCount Pulses Gate

VDCGEN value value 0 level

Mode L: Hardware-Triggered Delayed Pulse One-shot
Mode L is similar to Mode J except that counting does not begin until an armed
counter detects a gate edge. START (arm) the counter before applying the triggering
gate edge. Disarmed counters ignore gate edges.

The counter starts counting Clock edges after the triggering gate edge, and counting
proceeds until the second TC. Note that after the application of a triggering gate
edge, the counter disregards the Gate input for the remainder of the count cycle.
Because of this feature, Mode L differs from Mode K, which allows the Gate to
modulate the count cycle to stop and start the counter.

On the first TC after application of the triggering gate edge, the counter reloads the
onCount value. On the second TC, the counter reloads the Period value and stops
counting until it detects a new gate edge. Note that unlike Mode K, the counter
requires new gate edges after every second TC to continue counting.

Mode Period onCount Pulses Gate

PULSEGEN value value 0 edge

Mode N: Software-Triggered Strobe with Level Gating and
Hardware Retriggering
Mode N provides a software-triggered strobe with level gating. The strobe is also
hardware-retriggerable. The application must issue a START (arm) command to the
counter before it can begin counting. Once armed, the counter counts all Clock
edges that occur while the Gate is active and disregards Clock edges that occur
while the Gate is inactive. This feature permits the Gate to turn the count process
on and off.

After receiving a START command and an active gate, the counter counts to TC.
Upon reaching TC, the counter reloads the Period value and automatically disarms
itself inhibiting further counting. Counting resumes upon receipt of a STOP followed
by a new START command.

All active-going gate edges issued to an armed counter cause a retrigger operation.
Upon application of the gate edge, the counter saves the current count in the Hold
register. On the first qualified Clock edge after application of the retriggering gate
edge, the counter loads the Period value. Counting resumes on the second qualified
Clock edge after the retriggering gate edge. Qualified Clock edges are active-going
edges that occur while the gate is active.

DriverLINX Counter/Timer User’s Guide Hardware Reference • 123

Mode Period onCount Pulses Gate

RETRIGONESHOT value 0 1 level

Mode O: Software-Triggered Strobe with Edge Gating and
Hardware Retriggering
Mode O is similar to Mode N except that an armed counter does not begin counting
until it detects an active-going gate edge. The gate level does not modulate counting.

The application must START (arm) the counter before application of the triggering
gate edge. A disarmed counter ignores gate edges. Irrespective of the gate level, the
counter counts all Clock edges after receiving the triggering gate edge until the first
TC. On the first TC, the counter reloads the Period value and disarms. To initiate a
new counting cycle, apply a STOP command followed by a new START command
and a new gate edge.

Unlike operation in Modes C, F, I, and L, which disregard the Gate input after
counting starts, all active-going gate edges, including the first gate edge used to start
the counter, retrigger the count process. On each retriggering gate edge, the counter
saves the current count in the Hold register. On the first Clock edge after the
retriggering gate edge, the counter loads the Period value. Counting resumes on the
second Clock edge after a retrigger.

Mode Period onCount Pulses Gate

RETRIGONESHOT value 0 1 edge

Mode Q: Rate Generator with Synchronization (Event
Counter with Auto-Read/Reset)
Mode Q provides a rate generator with synchronization or an event counter with
auto-read/reset. The application must first issue a START (arm) command before
counting can occur. Once armed, the counter counts all Clock edges that occur
while the Gate is active and disregards those edges occurring while the Gate is
inactive. This permits the Gate to turn the count process on and off.

After receiving a START command and an active gate, the counter counts to TC
repetitively. On each TC, the counter reloads the Period value. At any time, an
active-going gate edge at the Gate input retriggers the counter. The retriggering gate
edge transfers the contents of the counter into the Hold register. The first qualified
Clock edge after the retriggering gate edge transfers the Period value into the
counter. Counting resumes on the second qualified Clock edge after the retriggering
gate edge. Qualified Clock edges are active-going edges that occur while the Gate
is active.

Mode Period onCount Pulses Gate

RETRIGRATEGEN value 0 0 level

RETRIGSQWAVE load 0 0 level

124 • Hardware Reference DriverLINX Counter/Timer User’s Guide

Mode R: Retriggerable One-shot
Mode R is similar to Mode Q except that Mode R uses edge gating rather than level
gating. In other words, rather than use the gate level to qualify which Clock edges to
count, Mode R uses gate edges to start the counting operation.

The application must START (arm) the counter before application of a triggering
gate edge. A disarmed counter ignores applied gate edges. After application of a gate
edge, an armed counter counts all Clock edges until TC irrespective of the gate
level. On the first TC, the counter reloads the Period value and stops. The counter
restarts counting after detecting a new gate edge. All applied gate edges, including
the first used to trigger counting, initiate a retrigger operation. Upon application of a
gate edge, the counter saves its current count in the Hold register. On the first Clock
edge after the retriggering gate edge, the counter reloads the Period value. Counting
resumes on the second Clock edge after the retriggering gate edge.

Mode Period onCount Pulses Gate

RETRIGONESHOT value 0 0 edge

Mode S Delayed Pulse One-shot with Level-selected
Reloading

In Mode S, the Gate input determines the reload Clock for armed or unarmed
counters and for TC-initiated reloads. The Gate input in Mode S only selects the
reload source; it does not start or modulate counting. When the Gate is low, the
counter reloads the Period value; when the Gate is high, the counter reloads the
onCount value. Once STARTed (armed), the counter counts to TC twice and then
disarms itself. On each TC, the counter reloads the gate-selected source. Following
the second TC, the counter requires a new START command to begin a new
counting cycle.

Mode Period onCount Pulses Gate

FSKGEN value value 1 DISABLED

Mode V: Frequency-shift Keying
Mode V provides frequency-shift keying modulation capability. Gate operation in
this mode is identical to that of Mode S. If the Gate is low, CONFIGURE or
START commands or a TC-induced reload transfers the Period value to the
counter. If the Gate is high, reloads occur from the onCount value. The polarity of
the Gate selects only the reload source; it does not start or modulate counting.

Once armed, the counter counts repetitively to TC. On each TC, the Gate polarity
selects the counter reload source. Counting continues in this manner until the
application issues a STOP command. To obtain frequency-shift keying, specify the
TC toggled output mode. Modulating the Gate input switches the output
frequencies.

DriverLINX Counter/Timer User’s Guide Hardware Reference • 125

Mode Period onCount Pulses Gate

FSKGEN value value 0 DISABLED

Mode X: Hardware Save
Mode X provides a hardware sampling of the counter contents without interrupting
the count. A START command arms the counter. Once armed, a gate edge starts the
counting operation. Disarmed counters ignore gate edges. After application of the
triggering gate edge, the counter counts all qualified Clock edges until the first TC
irrespective of the gate level. Gate edges applied during the counting sequence store
the current count in the Hold register, but they do not interrupt the counting
sequence. On each TC, the counter reloads the Period value and stops. Subsequent
counting requires a new triggering gate edge. Counting resumes on the first Clock
edge following the triggering gate edge.

Mode Period onCount Pulses Gate

RATEGEN value 0 0 edge

SQWAVE value 0 0 edge

DriverLINX Counter/Timer User’s Guide Glossary of Terms • 127

Glossary of Terms

ActiveX
Component software object using Microsoft’s Component Object Model
specification for 16- and 32-bit controls. ActiveX controls were formerly called
OCX controls.

API
Application Programming Interface—the properties and methods used to
communicate with a software service.

COM
Component Object Model is a specification of a binary standard for reusable
software objects.

DMA
Direct Memory Access provides a direct device to memory hardware channel that
does not require software overhead to transfer acquired data.

Kernel Mode
The privileged mode in which the operating system runs system software such as
device drivers. Kernel mode software has complete access to memory and hardware
resources.

Logical Channel
A DriverLINX-assigned number for a data channel of a Logical Subsystem.

Logical Device
A user-assigned number that a DriverLINX driver uses to designate an installed
hardware device.

128 • Glossary of Terms DriverLINX Counter/Timer User’s Guide

Logical Device Descriptor
A DriverLINX data structure that contains hardware specifications for a Logical
Device.

Logical Subsystem
A set of related hardware resources on a data-acquisition device. DriverLINX
abstractly characterizes all data-acquisition devices as consisting of seven possible
subsystems—device, analog input, analog output, digital input, digital output, and
counter/timer.

nibble
A nibble is 4 bits or ½ byte.

OCX
OLE Custom Controls are now called ActiveX custom controls.

OLE
Object Linking and Embedding is an older term for Microsoft's ActiveX technology.

Service Request
A DriverLINX data structure that completely specifies the parameters for all data-
acquisition tasks.

TC
“Terminal Count” The Am9513 defines TC as that period of time when the counter
contents would have been zero if the internal counter circuitry had not transferred an
external value into the counter.

User Mode
The mode in which the operating system runs user applications. User mode software
has restricted access to memory, other processes, and hardware.

VBX
Component software object using the 16-bit Visual Basic Custom Control
specification. Many 16-bit C/C++ compilers and Delphi 1.0 also support VBX
controls.

DriverLINX Counter/Timer User’s Guide Index • 129

Index

1

16-bit 19–20, 31–32, 59, 81, 83, 87, 93, 97, 102–4,
107–9, 116

3

32-bit 15, 23, 26, 44, 55, 58–59, 82–83, 87–89

A

ActiveX 18, 35, 39, 44, 59
Address 32
Advanced Micro Devices 118
Am9513 10, 19–21, 117, 23–25, 55, 65, 67, 79–82, 117,

84, 87–88, 117
Advanced Micro Devices 118
counter output 25, 35–36, 55, 80, 87, 93, 97, 102, 107
letter designations for modes 21
Mode A 118
Mode B 118
Mode C 119–20
Mode D 119
Mode E 119
Mode F 120
Mode G 120–21
Mode H 120–21
Mode J 121–22
Mode K 121–22
Mode L 122
Mode N 122–23
Mode O 123
Mode Q 123–24
Mode R 124
Mode S 124
Mode V 124
Mode X 125

B

background tasks 37, 49, 53, 60

block I/O transfers 33
block transfer 38
BufferFilled 27, 54
BurstGen 25–26, 55

C

C/C++ interface 18, 44
Clock property

external 23
gate 23
internal 23–24
source 23
terminal count 23

CloseDriverLINX 45
configuration 9, 15, 28, 41, 46
Configure 28–29, 40, 64
configuring a counter/timer 36, 57, 64
configuring channels for a group 38
connecting to a driver 36
control interface 18, 35
converting between counts and time 36, 37, 56, 58, 86
Count 25, 55
Count32 26, 55, 82–85
Count64 26, 55, 82–85
counter output 25, 35–36, 55, 80, 87, 93, 97, 102, 107
counter/timer hardware 19–21, 28–30, 61, 64, 79
counter/timer model 21, 35, 113, 116, 118
counter/timer output

default 55
creating tasks 26
CriticalError 27–28, 53–54
CTM-05 30–32
CTM-10 30–31, 32, 43, 65, 67

D

data buffer 17, 28–29, 38, 42–43, 60, 63, 68, 75, 80
DataLost 27–28, 53–54
Default 25, 27, 55
default counter/timer output 55
Delay property 63
delayed pulse 20, 103–4, 120–22, 124
Delphi 44
Detect 49
device drivers 9, 11, 13–15, 44–46, 44–46, 48
device initialization 36, 50
DI_EXTCLK 62
digital event 62–63, 72
Digital Event

Mask 62–63, 72–73
Match 62, 72
Pattern 62–63, 72

Digital Events
Delay 63
using 42, 62–63, 68

130 • Index DriverLINX Counter/Timer User’s Guide

digital hardware 31
digital I/O

block transfer 38
single value 38

direct hardware I/O 13
Disabled 24
DisableServiceStartDone 53
Distribution Disks 9, 15
Divider 25, 55
DL_MESSAGEBOX 49
DL_SetServiceRequestSize 51, 52, 66, 70, 73, 76–77,

84, 90, 94, 99, 105, 111
DLCODES.H 44
DLL 11, 44–45, 59
DLSecs2Tics 59
DLTics2Secs 59
DLXOCX32.OCX 44
DMA 39
DOS 13–14
DriverLINX

counter/timer model 21, 35, 113, 116, 118
creating tasks 26
detect hardware 49
Events 27–28, 27–28, 41, 27–28, 52, 54, 27–28, 60,

27–28, 62, 27–28
hardware model 9, 15
hardware sharing 26
interfacing 35, 43
Logical Device Descriptor 15–17, 41
Logical Driver 46
Logical Subsystem 17–18, 39, 46, 75
messages 16–18, 27, 36, 52–54, 60, 48–49, 52–54, 60,

62–63
Operations 37, 39–40, 48–50, 52, 57, 60, 61–62, 64–

65, 67, 68, 72, 75, 79, 86, 92, 96, 101, 107
programming model 9, 15–16, 19
Service Request 15–17, 26–29, 36–37, 39, 40–43, 46–

52, 53–54, 56–58, 60, 61–69, 73, 79–80, 84–86,
89–91, 93–97, 98–100, 102, 104–6, 107, 110–12,
113, 116, 117

software license 7
task model 26
taskId 27, 49

DriverLINX 4.0 Installation and Configuration Guide 9
DriverLINX error 36, 44, 48
DriverLINX messages

BufferFilled 27, 54
CriticalError 27–28, 53–54
DataLost 27–28, 53–54
ServiceDone 27–28, 53–54
ServiceStart 27–28, 53–54
StartEvent 27
StopEvent 27
TimerTic 27–29, 54

DriverLINX Mode
INTERRUPT 29, 60–61, 67

OTHER 29, 50
POLLED 29, 65

DriverLINX Operation
Configure 28–29, 40, 64
Initialize 28, 40, 51, 52

DriverLINX Technical Reference Manual 9, 15, 17–18,
39, 41, 48, 52, 63

DriverLINXSR 47, 49–51, 52–54, 57, 67, 71, 74, 78,
85, 91, 95, 100, 106, 112

DRVLINX.H 39, 44
DRVLNX32.DLL 44

E

edge gating 21, 102, 108, 123–24
Edit a Service Request 36
EDIT flag 47
Edit Service Request dialog 36, 39, 47
EnableAllEvents 53–54
Enabled 24
Error reporting 36
event counting 19, 23, 35, 37, 79–85

non-repetitive 81–83
repetitive 81–83

Events Group 17, 41, 57, 60–61, 65, 67–68, 72, 75, 80,
86, 93, 96, 101, 107

examples
DisableServiceStartDone 53
EnableAllEvents 53–54
InitCounterTimers 52
OnDLMessage 54
ReadChannel 70–71
ReadChannelBuff 76, 78
ReadCounterTimer 56–57
ShowDriverLINXMessage 48–49
ShowEditSR 47
StartEventCount 84–85
StartFrequency 111–12
StartFrequencyMeasurement 90–91
StartIntervalMeasurement 94–95
StartPeriodPulseWidthMeasurement 99–100
StartPulseStrobe 105–6
StopDriverLINXTask 49, 56–57
WriteBits 73
WriteChanBuf 77–78
WriteChannel 70–71

external interrupt input line 42, 61–62, 68
ExternalNE 23
ExternalPE 23

F

foreground tasks 37, 53
Freq 25, 55
Freq32 26, 55, 88–91
FreqRatio 26, 55

DriverLINX Counter/Timer User’s Guide Index • 131

frequency generation 19–20, 23, 35, 37, 107–12, 107–
12, 119, 121

frequency measurement 23, 26, 35, 37, 85, 87–91
frequency-shift keying 21, 26, 55, 109, 124
FSK 21, 26, 55, 109, 124
FskGen 26, 55, 103, 109, 124–25
FSKGEN 21, 26, 55, 109, 124
functions

CloseDriverLINX 45
Sec2Tics 58
Tics2Sec 58

G

Gate property 24, 97
disabled 24
enabled 24
HiTcNm1 24
no connection 24

gate1 23
gating

edge 21, 102, 108, 123–24
hardware 20, 81–83, 87–88, 102–3, 104, 108–9, 118–

19, 120
level 20, 81–83, 88, 97, 102, 108–9, 114, 118–19,

121–24
group tasks 29, 37, 63–64, 56–57, 63–64, 63–64, 65–68

interrupt mode 38, 43, 63, 67
polled 38, 43, 63–67

H

hardware gating 20, 81–83, 87–88, 102–3, 104, 108–9,
118–19, 120

hardware model 9, 15
hardware sharing 26
hardware-triggered 102–3, 104, 115, 119, 121–22
HiActive 25, 55
HiTcNm1 24
HiToggled 25, 55
HiZ 25
hWnd 45, 51, 52, 54, 66, 70, 73, 76–77, 84, 90, 94, 99,

105, 111

I

I/O address 15
InitCounterTimers 52
Initialize 28, 40, 51, 52
Intel 8254 10, 19–20, 19, 23–25, 55, 65, 67, 113
interfacing to DriverLINX 35, 43
Internal1 23–24
interrupt

external input 42, 61–62, 68
INTERRUPT 29, 60–61, 67
interrupt mode groups 38, 43, 63, 67

interval measurement 23, 35, 37, 92–95, 92–95, 97
ioValue property 69, 73

K

KMBCTM 45

L

LDD 17
letter designations 21
level gating 20, 81–83, 88, 97, 102, 108–9, 114, 118–

19, 121–24
library file format 44
LoActive 25, 55
Logical Channel 16, 23–24, 25, 29, 31–33, 38, 40–43,

46, 56–64, 67–69, 72–73, 75, 84, 87, 89, 93–94,
98, 104, 110

Logical Device 15–17, 39, 41, 46, 50, 52, 57–61, 62,
65, 67–68, 72, 75, 79, 86, 92, 96, 101, 107

Logical Device Descriptor 15–17, 41
Logical Driver 46
Logical Subsystem 17–18, 39, 46, 75
LoToggled 25, 55
LoZ 25

M

Mask 62–63, 72–73
Match 62, 72
MESSAGEBOX 48–49
messages 16–18, 27, 36, 52–54, 60, 48–49, 52–54, 60,

62–63
BufferFilled 27, 54
CriticalError 27–28, 53–54
DataLost 27–28, 53–54
ServiceDone 27–28, 53–54
ServiceStart 27–28, 53–54
StartEvent 27
StopEvent 27
TimerTic 27–29, 54

methods
DLSecs2Tics 59
DLTics2Secs 59
Refresh 18, 47, 49–51, 52, 57, 67, 71, 74, 78, 85, 91,

95, 100, 106, 112
MetraByte 30, 45

CTM-05/A 30–32
CTM-10 30–31, 32, 43, 65, 67

MFC 54
Microsoft Foundation Classes 54
Mode 0 55, 114–17
Mode 1 55, 114, 116–17
Mode 2 24, 114–15, 117
Mode 3 115
Mode 4 55, 115

132 • Index DriverLINX Counter/Timer User’s Guide

Mode 5 55, 115
Mode I 121
Mode property 25–26, 37

BurstGen 25–26, 55
Count 25, 55
Count32 26, 55, 82–85
Count64 26, 55, 82–85
Divider 25, 55
Freq 25, 55
Freq32 26, 55, 88–91
FreqRatio 26, 55
FskGen 26, 55, 103, 109, 124–25
OneShot 26, 55, 60, 102–3
PulseGen 26, 55, 103–6, 116, 120–22
PulseWd 25, 55, 97–100
RateGen 25–26, 55, 60–61, 108–9, 115, 117, 119, 125
RetrigOneShot 105–6, 114–15, 123–24
RetrigRateGen 123
RetrigSqWave 123
SplitClk 25, 55
SqWave 25–26, 55, 108–9, 115, 117, 119, 125
VDCGen 25, 55, 109–10, 117, 121

model
counter/timer 21, 35, 113, 116, 118

MS-DOS 13–14

N

NoConnect 24
non-repetitive counting 81–83
non-retriggerable 20, 102, 104, 116, 120

O

OCX 18, 39, 44–45
OLE 18, 44
OnCount 22, 58, 87, 102, 113, 116–18, 122
OnDLMessage 54
one-shot 19–20, 23, 26, 55, 101–4, 114, 116–17, 120,

122, 124
retriggerable 19–20, 26, 55, 103, 114, 116, 120, 124

OneShot 26, 55, 60, 102–3
Open DriverLINX dialog 44–45
Operations 37, 39–40, 48–50, 52, 57, 60, 61–62, 64–65,

67, 68, 72, 75, 79, 86, 92, 96, 101, 107
OTHER 29, 50
output polarity 20
Output property 25, 80, 87, 93, 97, 102, 107

Default 25, 27, 55
HiActive 25, 55
HiToggled 25, 55
HiZ 25
LoActive 25, 55
LoToggled 25, 55
LoZ 25
Toggled 25, 55

P

Pattern 62–63, 72
period and pulse width measurement 23, 35, 37, 96
period measurement 96–97
POLLED 29, 65
polled mode groups 38, 43, 63–67
programming model 9, 15–16, 19
Property

Clock 23, 84, 87, 89, 93, 97, 102, 107
gate 24, 97
output 25, 80, 87, 93, 97, 102, 107

pulse generation 23, 101
delayed 20, 103–4, 120–22, 124
delayed one-shot 19–20, 23, 26, 55, 101–4, 114, 116–

17, 120, 122, 124
pulse width measurement 23, 25, 35, 37, 96–97, 55, 96–

97, 100
PulseGen 26, 55, 103–6, 116, 120–22
PulseWd 25, 55, 97–100

R

rate event properties 35, 41, 81–83, 87–88, 93, 97, 103–
4, 109–10

rate generator 19, 20, 25–26, 55, 80, 87, 93, 97, 102,
107–10, 114, 119, 121–23

variable duty cycle 21, 25, 55, 109–10, 121
RateGen 25–26, 55, 60–61, 108–9, 115, 117, 119, 125
ReadChannel 70–71
ReadChannelBuff 76, 78
ReadCounterTimer 56–57
Refresh 18, 47, 49–51, 52, 57, 67, 71, 74, 78, 85, 91,

95, 100, 106, 112
repetitive counting 81–83
Req_device 51, 52, 67, 85, 91, 95, 100, 106, 112
Req_DLL_name 45
Req_mode 51, 52, 67, 71, 74, 78, 85, 91, 95, 100, 106,

112
Req_op 47, 49–51, 52, 57, 67, 71, 74, 78, 85, 91, 95,

100, 106, 112
Req_op_edit 47
Req_subsystem 51, 52, 67, 71, 74, 78, 85, 91, 95, 100,

106, 112
Request Group 17, 39, 50, 52, 57, 60, 61, 65, 66–68,

72, 75, 79, 84, 86, 90, 92, 94, 96, 99, 101, 105,
107, 111

Res_result 47, 49–51, 52, 57, 67, 71, 74, 78, 85, 91, 95,
100, 106, 112

Res_Tim_count 57
Res_Tim_status 57
Results Group 17, 56, 69, 73
retriggerable one-shot 19–20, 26, 55, 103, 114, 116,

120, 124
RetrigOneShot 105–6, 114–15, 123–24
RetrigRateGen 123

DriverLINX Counter/Timer User’s Guide Index • 133

RetrigSqWave 123

S

Scientific Software Tools 7–8
Sec2Tics 58
Select Group 17, 69, 73, 75
SelectDriverLINX 45–46
selecting a driver 36, 46
Service Request 15–17, 26–29, 36–37, 39, 40–43, 46–

52, 53–54, 56–58, 60, 61–69, 73, 79–80, 84–86,
89–91, 93–97, 98–100, 102, 104–6, 107, 110–12,
113, 116, 117

DL_SetServiceRequestSize 51, 52, 66, 70, 73, 76–77,
84, 90, 94, 99, 105, 111

EDIT flag 47
hWnd 45, 51, 52, 54, 66, 70, 73, 76–77, 84, 90, 94,

99, 105, 111
Refresh 18, 47, 49–51, 52, 57, 67, 71, 74, 78, 85, 91,

95, 100, 106, 112
Req_device 51, 52, 67, 85, 91, 95, 100, 106, 112
Req_mode 51, 52, 67, 71, 74, 78, 85, 91, 95, 100,

106, 112
Req_op 47, 49–51, 52, 57, 67, 71, 74, 78, 85, 91, 95,

100, 106, 112
Req_op_edit 47
Req_subsystem 51, 52, 67, 71, 74, 78, 85, 91, 95, 100,

106, 112
Res_result 47, 49–51, 52, 57, 67, 71, 74, 78, 85, 91,

95, 100, 106, 112
Res_Tim_count 57
Res_Tim_status 57
taskId 27, 49

ServiceDone 27–28, 53–54
ServiceStart 27–28, 53–54
ShowDriverLINXMessage 48–49
ShowEditSR 47
single value I/O 38
software license 7
software-triggered 102–4, 114–15, 118, 120, 122–23
Source1 23
SplitClk 25, 55
SqWave 25–26, 55, 108–9, 115, 117, 119, 125
SQWAVE 25–26, 55, 108–9, 115, 117, 119, 125
Start Event 27, 69, 72, 75, 80, 86, 93, 97, 101, 107
StartEvent 27
StartEventCount 84–85
StartFrequency 111–12
StartFrequencyMeasurement 90–91
StartIntervalMeasurement 94–95
StartPeriodPulseWidthMeasurement 99–100
StartPulseStrobe 105–6
status polling 36–38, 36, 37, 56, 65–66, 65
StopDriverLINXTask 49, 56–57
StopEvent 27
stopping a task 36, 49

strobe 19–21, 26, 30, 35, 37, 101–6, 55, 101–6, 114–15,
118–19, 121, 122–23

T

task model 26
taskFlags 53
taskId 27, 49
Tasks

background 37, 49, 53, 60
configuring a counter/timer 36, 57, 64
configuring channels for a group 38
connecting to a driver 36
converting between counts and time 36, 37, 56, 58, 86
counter output 25, 35–36, 55, 80, 87, 93, 97, 102, 107
device initialization 36, 50
Edit a Service Request 36
error reporting 36
event counting 19, 23, 35, 37, 79–85
foreground 37, 53
frequency generation 19–20, 23, 35, 37, 107–12, 107–

12, 119, 121
frequency measurement 23, 26, 35, 37, 85, 87–91
group 29, 37, 63–64, 56–57, 63–64, 63–64, 65–68
interval measurement 23, 35, 37, 92–95, 92–95, 97
period and pulse width measurement 23, 25, 35, 37,

96–97, 37, 55, 96–97, 96–97, 100
pulse generation 23, 101
selecting a driver 36, 46
single value I/O 38
status polling 36–38, 36, 37, 56, 65–66, 65
stopping 36, 49

TC 25, 114–15, 118–25
TCNm1 23
terminal count

TC 25, 114–15, 118–25
Terminal count 23–24, 42, 61–62, 67–68, 72, 75, 80,

84, 86, 93, 96, 101, 107, 114, 116–17
Terminal count signal 23
Tics2Sec 58
TimerTic 27–29, 54
Timing 19–21, 41, 57, 60–61, 62, 65, 67–68, 72, 75, 80,

84, 86, 90, 92–93, 94, 96, 99, 101, 105, 107, 111,
117, 120

Toggled 25, 55
triggering

hardware 102–3, 104, 115, 119, 121–22
non-retriggerable 20, 102, 104, 116, 120
software 102–4, 114–15, 118, 120, 122–23

V

variable duty cycle rate generator 21, 25, 55, 109–10,
121

VBX 18, 35, 45, 59
VDCGen 25, 55, 109–10, 117, 121

134 • Index DriverLINX Counter/Timer User’s Guide

VDCGEN 25, 55, 109–10, 117, 121
Visual Basic 13, 18, 35, 44, 47–49, 51, 52–54, 57, 67,

71, 74, 78, 85, 91, 95, 100, 106, 112

W

Windows 3.x 13, 15
Windows 95 13, 15, 44
Windows NT 13–15, 44
WriteBits 73
WriteChanBuf 77–78
WriteChannel 70–71

	Preface�
	Software License and Software Disclaimer of Warranty�
	About DriverLINX�
	About This Programming Guide�
	Conventions Used in This Manual�

	Why Use a Counter/Timer Device Driver�
	Using Direct Hardware I/O�
	Advantages of Device Drivers�

	Introducing DriverLINX�
	About DriverLINX�
	DriverLINX Hardware Model�
	DriverLINX Driver�
	Logical Devices�
	Logical Subsystems�
	Logical Channels�

	DriverLINX Programming Model�
	Logical Device Descriptors�
	Service Requests�
	C/C++ Interface�
	Control Interface�

	Summary�

	Counter/Timers and DriverLINX�
	Counter/Timer Hardware Description�
	Intel 8254�
	KPCI-3140 Counter/Timer Chip�
	Am9513�

	DriverLINX Counter/Timer Model�
	
	Clocks�
	Gates�
	Outputs�
	Modes�

	DriverLINX Task Model�
	Hardware Sharing�
	Creating Tasks�
	Monitoring and Stopping Tasks�
	DriverLINX Events�
	DriverLINX Operations�
	DriverLINX Modes�
	Individual and Group Tasks�

	Mapping Logical Channels to Counter/Timer Hardware Channels�
	Digital I/O Hardware�
	Mapping Logical Channels to Digital Hardware Channels�
	Properties of Logical Channels�
	Combining or Splitting Logical Channels�
	Implementation Notes�

	Programming Counter/Timers with DriverLINX�
	DriverLINX Counter/Timer Operations�
	DriverLINX Tasks for All Subsystems�
	DriverLINX Tasks for Counter/Timer Subsystem�
	Foreground Tasks�
	Background Tasks�
	Group Tasks�
	DriverLINX Tasks for Digital Subsystems�

	Using DriverLINX's Service Requests�
	Properties Common to All Service Requests�
	Modes and Operations for Counter/Timers�
	Other Mode�
	Polled Mode�
	Interrupt Mode�

	Using Events to Control Service Requests�
	Events for the Counter/Timer�
	Specifying Counter/Timer Channels in a Service Request�
	Specifying Data Buffers in a Service Request�

	Interfacing to DriverLINX�
	
	Interface with C/C++�
	Interface with the Custom Control�

	Opening and Closing a DriverLINX Device Driver�
	
	Open a Driver in C/C++�
	Open a Driver with the Custom Control�
	Close a Driver in C/C++�
	Close a Driver with the Custom Control�

	Selecting a DriverLINX Device Driver�
	
	Selecting a Driver in C/C++�
	Selecting a Driver with the Custom Control�

	Displaying the Edit Service Request Dialog�
	
	Display Edit Service Request Dialog Using C/C++�
	Display Edit Service Request Dialog Using Visual Basic�

	Reporting a DriverLINX Error�
	
	Display DriverLINX Message Box Using C/C++�
	Display DriverLINX Message Box Using Visual Basic�

	Stopping A DriverLINX Task�
	
	Stopping a Task Using C/C++�
	Stopping a Task Using Visual Basic�

	Initializing the Device�
	
	Initialize the Device Using C/C++�
	Initialize the Device Using Visual Basic�

	Initializing a Counter/Timer Subsystem�
	
	Initialize a Subsystem Using C/C++�
	Initialize a Subsystem Using Visual Basic�

	Using Messages and Events�
	Events for Foreground Tasks�
	Disable ServiceStart and ServiceDone Using C/C++�
	Disable ServiceStart and ServiceDone Using Visual Basic�

	Events for Background Tasks�
	Enable and Use Messages Using C/C++�
	Enable and Use Messages Using Visual Basic�

	Counter Output�
	Status Polling a Counter/Timer�
	
	Polling a Counter/Timer Using C/C++�
	Polling a Counter/Timer Using Visual Basic�

	Configuring a Counter/Timer Channel�
	Converting Between Counts and Time�
	
	Time Conversion in C/C++�
	Time Conversion Using the Custom Control�

	Using Background Tasks�
	Using a Counter/Timer to Generate Clock Messages�
	Storing the Counter/Timer Value at Each Interrupt�
	Using the External Interrupt Input Line�
	Using Digital Start and Stop Events�

	Controlling Group Tasks�
	Select Channels�
	Polled Mode Groups�
	Starting a Polled Mode Group Using C/C++�
	Starting a Polled Mode Group Task Using Visual Basic�

	Interrupt Mode Groups�

	Using Digital I/O Tasks�
	Reading or Writing a Single Digital Value�
	Read or Write a Single Value Using C/C++�
	Read or Write a Single Value Using Visual Basic�

	Reading or Writing Specific Digital Bits�
	Write a Masked Value Using C/C++�
	Write a Masked Value Using Visual Basic�

	Rapidly Transferring a Block of Digital Data�
	Read or Write a Single Buffer Using C/C++�
	Read or Write a Single Buffer Using Visual Basic�

	Using Task-Oriented Functions�
	DriverLINX's Task-Oriented Functions�
	Event Counting�
	Starting an Event Counter�
	Specifying the Rate Event for Event Counting�
	Am9513�
	KPCI-3140�

	Hardware Setup for Event Counting�
	Event Counting Using C/C++�
	Event Counting Using Visual Basic�

	Frequency Measurement�
	Starting a Frequency Counter�
	Specifying the Rate Event for Frequency Measurements�
	Am9513�
	KPCI-3140�

	Hardware Setup for Frequency Measurement�
	Frequency Measurement Using C/C++�
	Frequency Measurement Using Visual Basic�

	Interval Measurement�
	Starting an Interval Counter�
	Specifying the Rate Event for Interval Measurements�
	Am9513�

	Hardware Setup for Interval Measurements�
	Interval Measurement Using C/C++�
	Interval Measurement Using Visual Basic�

	Period and Pulse Width Measurement�
	Starting an Period or Pulse Width Measurement�
	Specifying the Rate Event for Period and Pulse Width Measurements�
	Am9513�
	KPCI-3140�

	Hardware Setup for Period and Pulse Width Measurements�
	Period or Pulse Width Measurements Using C/C++�
	Period or Pulse Width Measurement Using Visual Basic�

	Pulse and Strobe Generation�
	Starting Pulse and Strobe Generation�
	Specifying the Rate Event for Pulses and Strobes�
	AM9513�
	KPCI-3140�

	Hardware Setup for Pulses and Strobes�
	Pulse and Strobe Generation Using C/C++�
	Pulse and Strobe Generation Using Visual Basic�

	Frequency Generation�
	Starting Frequency Generation�
	Specifying the Rate Event for Frequency Generation�
	Am9513�
	KPCI-3140�

	Hardware Setup for Frequency Generation�
	Frequency Generation Using C/C++�
	Frequency Generation Using Visual Basic�

	Hardware Reference�
	8254 Operating Modes�
	Operating Mode Descriptions�
	Mode 0: Interrupt on Terminal Count�
	Mode 1:Hardware-retriggerable One-Shot�
	Mode 2: Rate Generator�
	Mode 3: Square Wave�
	Mode 4: Software-triggered Strobe�
	Mode 5: Hardware-triggered Strobe�

	KPCI-3140 Operating Modes�
	Operating Mode Descriptions�
	Mode 0: Non-retriggerable One-shot�
	Mode 1: Retriggerable One-shot�
	Mode 2: Continuous Increment�

	Am9513 Operating Modes�
	Operating Mode Descriptions�
	Mode A: Software-Triggered Strobe with No Hardware Gating�
	Mode B: Software-Triggered Strobe with Level Gating�
	Mode C: Hardware-triggered Strobe�
	Mode D: Rate Generator with No Hardware Gating�
	Mode E: Rate Generator with Level Gating�
	Mode F: Non-Retriggerable One-shot�
	Mode G: Software-Triggered, Delayed Pulse One-shot�
	Mode H: Software-Triggered, Delayed Pulse One-shot with Hardware Gating�
	Mode I: Hardware-triggered, Delayed Pulse Strobe�
	Mode J: Variable Duty Cycle Rate Generator with No Hardware Gating�
	Mode K: Variable Duty Cycle Rate Generator with Level Gating�
	Mode L: Hardware-Triggered Delayed Pulse One-shot�
	Mode N: Software-Triggered Strobe with Level Gating and Hardware Retriggering�
	Mode O: Software-Triggered Strobe with Edge Gating and Hardware Retriggering�
	Mode Q: Rate Generator with Synchronization (Event Counter with Auto-Read/Reset)�
	Mode R: Retriggerable One-shot�
	Mode S Delayed Pulse One-shot with Level-selected Reloading�
	Mode V: Frequency-shift Keying�
	Mode X: Hardware Save�

	Glossary of Terms�
	Index�

